2012-13 Academic Calendar Note: Dates subject to change without notice. | | Fall 2012 | Winter 2013 | Spring 2013 | |----------------------------|-----------------------|-------------------|------------------| | Registration begins | May 16, 2012 | October 27, 2012 | February 6, 2013 | | Quarter begins | September 23, 2012 | January 7, 2013 | April 1, 2013 | | Convocation | September 24, 2012 | | | | Pre-instruction Activities | September 24-26, 2012 | January 7, 2013 | April 1, 2013 | | First day of instruction | September 27, 2012 | January 7, 2013 | April 1, 2013 | | Last day of instruction | December 7, 2012 | March 15, 2013 | June 7, 2013 | | Final examinations | December 8-14, 2012 | March 16-22, 2013 | June 8-14, 2013 | | Quarter ends | December 14, 2012 | March 22, 2013 | June 14, 2013 | | Commencement | | | June 15-16, 2013 | ### Summer Sessions 2013 Registration begins: April 8, 2013 First day of instruction: June 24, 2013 ### 2012-13 Campus Holidays **Labor Day:** Monday, September 3, 2012 **Veterans' Day:** Monday, November 12, 2012 **Thanksgiving:** Thursday & Friday, November 22 & 23, 2012 **Christmas:** Monday & Tuesday, December 24 & 25, 2012 New Year: Monday & Tuesday, December 31, 2012 & January 1 2013 Martin Luther King, Jr.'s Birthday: Monday, January 21, 2013 Presidents' Holiday: Monday, February 18, 2013 Cesar Chavez Holiday: Friday, March 29, 2013 Memorial Day: Monday, May 27, 2013 Independence Day: Thursday, July 4, 2013 ### EQUAL OPPORTUNITY AND NONDISCRIMINATION The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy¹, disability, age, medical condition (cancer related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities. Inquiries regarding the University's student-related nondiscrimination policies may be directed to the Director of Equal Opportunity at (805) 893-3089. ### Produced by the College of Engineering, Student Advising Division Glenn Beltz, Associate Dean for Undergraduate Studies Pam Bayer, Lead Academic Advisor Peter Allen, Publications Director Terri Coleman, Editor This publication is available at: www.engineering.ucsb.edu/current_undergraduates/publications $^{^{1}}$ Pregnancy includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth. # General Engineering Academic Requirements 2012-2013 College of Engineering • University of California • Santa Barbara Volume 3, June 2012 College of Engineering Office of Undergraduate Studies Harold Frank Hall room 1006 University of California Santa Barbara, CA 93106-5130 Phone: (805) 893-2809 Fax (805) 893-8124 Email: coe-info@engineering.ucsb.edu # **Message from the Associate Dean** elcome to the College of Engineering at UC Santa Barbara. There are many reasons we are one of the top engineering schools in the nation. We bring together an amazing faculty, the members of which are highly acclaimed in the scientific communities in which they work. UCSB professors are, in fact, among the most cited by their colleagues worldwide, a testament to the quality and creativity of their research. A high percentage of the faculty has been elected to the prestigious National Academy of Sciences and National Academy of Engineering. We have five Nobel Prize winners on this campus, four of whom are faculty in engineering and the sciences. We're also home to an amazing group of smart, accomplished, high-energy students. These more than 1,350 undergraduates, pursuing a variety of interests, contribute greatly to the quality of the learning environment as well as to the overall richness of campus life. We have crafted courses that balance theory and applied science so our students are well prepared for successful careers in academia and in industry. Students especially interested in engineering and industry can take advantage of our Technology Management Program. Through coursework and "real world" experiences, the program gives our students insight into the world of technology from a business perspective. We want our students to understand what transforms a good technical idea into a good business idea. We want to give them a head start at attaining leadership positions in the technology business sector. With a thriving interdisciplinary environment, our campus culture fosters creativity and discovery. A truly interdisciplinary culture allows all sorts of ideas to cross-fertilize and makes it easy for faculty to work effectively between disciplines to tackle big questions. Visiting scholars tell us they don't often see the kind of openness among departments and ease of collaboration that they find here. As part of the prestigious and wellestablished University of California system, we have the resources as well as the breadth and depth of talent to pursue new fields of scientific inquiry. We also bring an entrepreneurial attitude to our research, focusing on applications as much as discovery. Our leading programs in areas as diverse as biotechnology, communications, computer security, materials, nanotechnology, networking, and photonic devices attest to the success of this approach. At the core of this activity are our students, our central purpose. We encourage you to pursue every opportunity, both in and outside the classroom, to enhance your education. We have a talented and wise faculty and staff, equipped with extensive knowledge and diverse experience, to help you make decisions about courses and other activities as you pursue your degree. We look forward to having you in our classes, laboratories, and offices as you discover where your interests lead you. Glenn Beltz Associate Dean for Undergraduate Studies Llem & Belt # **Table of Contents** | Message from the Associate Dean | 2 | |---|-----------------------| | College Overview Honors Programs | 4
5
5
6 | | General University Requirements UC Entry Level Writing Requirement American History and Institutions Requirement | 8 | | College General Education Requirements General Subject Area Requirements Special Subject Area Requirements Writing Requirement Depth Requirement Ethnicity Requirement European Traditions Requirement General Education Course Listing Checklist of General Education Requirements | 9
9
9
9
0 | | Department and Program InformationChemical Engineering | 2
8
4
5 | | Major Requirements (2012-13)Chemical Engineering4Computer Engineering4Computer Science4Electrical Engineering4Mechanical Engineering5 | 4
6
8 | | Additional Resources5 | 2 | | Academic Year CalendarFront Cove | er | | College Policy on Academic Conduct Back Cove | er | # College of Engineering The College of Engineering at UCSB is noted for its excellence in teaching, research, and service to the community. The college has an enrollment of approximately 1,350 undergraduate students and 750 graduate students with a full-time, permanent faculty of 129. This results in an excellent student to faculty ratio and a strong sense of community in the college. Our modern laboratory facilities are available to undergraduate as well as graduate students. UCSB has an unusually high proportion of undergraduates who are actively involved in faculty-directed research and independent study projects. The college offers the bachelor of science degree in five disciplines: chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering. The undergraduate programs in chemical, computer, electrical, and mechanical engineering are accredited by the Engineering Accreditation Commission of ABET, and the computer science bachelor of science program is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org. The curriculum for the bachelor of science degree is designed to be completed in four years. Completion of the four-year program provides students with the background to begin professional careers or to enter graduate programs in engineering or computer science, or professional schools of business, medicine, or law. Our curricula are specifically planned to retain both of these options and to assure that our graduates are equally well prepared to enter industry and graduate study. The college and the university offer a wide variety of career counseling and job placement services. The Office of Undergraduate Studies in Harold Frank Hall, Room 1006, provides academic advising for all undergraduates in the college. Faculty and academic advisors for the individual majors are also provided by the respective departments. This publication contains detailed information about the various programs and schedules and is published yearly. Copies may be obtained by writing to the College of Engineering, Harold Frank Hall, Room 1006, University of California, Santa Barbara, California 93106-5130. Alternatively, it is available on the web at: www.engineering.ucsb.edu/ current undergraduates. ### Mission Statement The mission of the College of Engineering is to provide its students a firm grounding in scientific and mathematical fundamentals; experience in analysis, synthesis, and design of engineer- ing systems; and exposure to current engineering practice and cutting edge engineering research and technology. A spirit of entrepreneurship in education, scholarly activity and participation in engineering practice infuses UCSB's College of Engineering. #
College of Engineering Honors Program The Honors Program in the College of Engineering is designed to enrich the educational opportunities of its best students. Students in the Honors Program will be encouraged to participate in early experiences in scholarship through special seminars and individualized work in regular courses and, in later years, as members of research teams. Students in the Honors Program will be provided opportunities to become peer mentors and tutors within the College. Participation in the Honors Program offers preferential enrollment in classes for continuing students as well as graduate student library privileges. Housing is available to eligible first-year students in Scholars' Halls located in several university-owned residence halls. The College of Engineering invites approximately the top 10% of incoming freshmen into the Honors Program based on a combination of high school GPA and SAT or ACT scores. (Please note: eligibility criteria are subject to change at any time.) Transfer students with a UC transferable GPA of 3.6 or greater are invited to join the College Honors Program. Students who do not enter the College of Engineering with honors at the freshman level may petition to enter the program after attaining a cumulative GPA of 3.5 or greater after two regular quarters at UCSB. Graduating with Honors Program Designation, students must complete 6.0 total Honors units during their junior and senior years; comprised of coursework from departmental 196, 197, 199 or graduate level courses with grades of B or higher, complete a total of 10 hours of community service per year, and maintain a 3.5 or higher cumulative GPA at the end of each Spring quarter. Continued participation in the College Honors Program is dependent on maintaining a cumulative GPA of 3.5 or greater and active participation in both the academic and community service components of the Program. ### Dean's Honors The College of Engineering gives public recognition to its outstanding undergraduate students by awarding Dean's Honors at the end of each regular academic term to students who have earned a 3.5 grade-point average for the quarter and have completed a program of 12 or more letter-graded units. (Grades of Incomplete or Not Passed automatically disqualify students for eligibility for Dean's Honors.) The Dean's Honors List is posted quarterly, and the award is noted quarterly on the student's permanent transcript. Graduating students of the College of Engineering who have achieved distinguished scholarship while at the university may qualify for Honors, High Honors, or Highest Honors at graduation. ### Tau Beta Pi Tau Beta Pi is the nation's oldest and largest engineering honor society. Its purpose is to honor academic achievement in engineering. Election to membership is by invitation only. To be eligible for consideration, students must be in the top one-eighth of their junior class or the top one-fifth of the senior class. Graduate students and faculty also belong to this honor society. In addition to regular meetings on campus, the organization participates in regional and national activities and sponsors local events, such as tutoring and leadership training, to serve the campus and community. # Education Abroad Program (EAP) Students are encouraged to broaden their academic experience by studying abroad for a year, or part of a year, under the auspices of the University of California Education Abroad Program See the EAP web site for more information: www.eap.ucsb.edu # **Student Organizations** Student chapters of a number of engineering professional organizations are active on the UCSB campus. Students interested in any of these organizations may contact the Office of Undergraduate Studies of the College of Engineering for more information. - American Institute of Chemical Engineers - American Society of Mechanical Engineers - Association for Computing Machinery - Engineering Student Council - · Engineers without Borders - Institute of Electrical and Electronics Engineers - Los Ingenieros (Mexican-American Engineering Society/Society of Hispanic Professional Engineers) - National Society of Black Engineers - Society for Advancement of Chicano and Native Americans in Science - Society of Women Engineers - Student Entrepreneurship Association - · Women in Science and Engineering - Women in Software and Hardware # Change of Major and Change of College Current UCSB students in a non-engineering major, as well as students wishing to change from one engineering major to another, are welcome to apply after the satisfactory completion of a pre-defined set of coursework. However, due to the current demand for engineering majors, students are cautioned that it is a very competitive process and not all applicants will be able to change their majors due to limited space availability. Students who enter UCSB as transfer students will not be able to change to or add an engineering major, if not initially accepted into one. Students who began as freshmen who plan to enter an engineering major or to change from one engineering major to another will be expected to complete at least 30 units at UCSB before petitioning for a change of major and usually must satisfy the prerequisites of the prospective major. Students who have completed more than 105 units will not be considered for a change of major/change of college in engineering or computer science unless they can demonstrate that they will be able to complete all the degree requirements without exceeding 215 total units. Notwithstanding any of the major-specific requirements described below, we caution that the capacity of any given program to accept new students changes, sometimes substantially, from year to year. It is incumbent upon students to continue to make progress in a backup major while pursuing a new major in the College of Engineering, and to periodically consult academic advisors in both the desired major as well as the backup major regarding the viability of pursuing the change of major. Chemical Engineering. Admission to the Chemical Engineering major is determined by a number of factors, including an overall UCSB grade point average of 3.0 or better, and satisfactory completion of the following courses or their equivalents: Math 3A-B, Math 3C or 4A, Chemistry 1A-1AL or 2A-2AC, 1B-1BL or 2B-2BC, 1C-1CL or 2C-2CC; Engineering 3; and Physics 1-2. Decisions involving factors beyond scores and grades are made exclusively by the chemical engineering faculty. Only a limited number of petitions will be approved. **Computer Engineering.** Students may petition to enter the Computer Engineering major at any time both of the following requirements are met: - An overall UCSB grade point average of at least 3.0. - Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of any five classes, including at least two Electrical & Computer Engineering (ECE) classes and two Computer Science (CMPSC) classes, from the following: Math 4B or 5A, ECE 2A-B-C, ECE 15A, CMPSC 16, 24, 32, 40. **Computer Science.** Students may petition to enter the Computer Science major when the following requirements are met: - An overall UCSB grade point average of at least 2.0; - Satisfactory completion (preferably at UCSB), with a grade of B better in Computer Science 16, 24, and 40; - Satisfactory completion (preferably at UCSB) with a grade of C or better in Math 3A and 3B; Math 3C or 4A; and Math 4B or 5A. The selection process is highly competitive and these milestones are minimum requirements for consideration, achieving them does not guarantee admission to the Computer Science major. Any petitions denied will be automatically considered a second time in the next quarter. Petitions denied a second time will not be reconsidered. More information can be found at http://cs.ucsb.edu/undergraduate/admissions/. **Electrical Engineering.** Students may petition to enter the Electrical Engineering major at any time *both* of the following requirements are met: - 1. An overall UCSB grade point average of at least 3.0. - Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of at least five classes, including at least two mathematics classes, from the following: Math 4B or 5A, Math 5B or 6A, Math 5C or 6B, ECE 2A-B-C, ECE 15A. The calculation of the minimum GPA will be based on all classes completed from this list at the time of petitioning. Mechanical Engineering. Before petitioning for a change of major to mechanical engineering, six (6) of the following core courses or their UC equivalents must be completed: Math 3A-B; Math 3C or 4A; Math 5A or 4B; Math 5B-C or 6A-B; Physics 1-2; ME 14-15 (at least one of the 6 courses must include ME 14 or ME 15). Acceptance into the major will be based on UC grade point averages, applicable courses completed, and space availability. All students considering changing into Mechanical Engineering must meet with the ME Academic Advisor. # **Degree Requirements** To be eligible for a bachelor of science degree from the College of Engineering, a student must meet three sets of requirements: general university requirements, college general education requirements, and major degree requirements. ### **General University Requirements** All undergraduate students must satisfy university academic residency, UC Entry Level Writing Requirement, American history and institutions, unit, and scholarship requirements. These requirements are described fully on page 8. # College General Education Requirements All students must satisfy the general education requirements for the College of Engineering. These requirements are described on pages 8 and includes a listing of courses which meet each requirement. ### **Major Degree Requirements** Preparation for the major and major requirements for each program must be satisfied, including unit and GPA requirements. These appear in subsequent sections of this publication. ### **Advanced
Placement Credit** Students who complete special advanced placement courses in high school and who earn scores of 3, 4, or 5 on the College Board Advanced Placement taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided scores are reported to the Office of Admissions. The specific unit values assigned to each test, course equivalents, and the applicability of this credit to the General Education requirements, are presented in the chart on page 7. Note: Advanced Placement credit earned prior to entering the university will not be counted toward the minimum cumulative progress requirements (see General Catalog for more details). ### **International Baccalaureate Credit** Students completing the International Baccalaureate (IB) diploma with a score of 30 or above will receive 30 quarter units total toward their UC undergraduate degree. The university grants 8 quarter units for certified IB Higher Level examinations on which a student scores 5, 6, or 7. The university does not grant credit for standard level exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed on page 6. Note: International Baccalaureate Examination credit earned prior to entering the university will not be counted toward maximum unit limitation either for selection of a major or for graduation. # Minimal Progress Requirements A student in the College of Engineering will be placed on academic probation if the total number of units passed at UCSB is fewer than that prescribed by the prevailing academic Senate regulation regarding Minimum Cumulative Progress. At least three-fourths of the minimum number of academic units passed must include courses prescribed for the major. The following courses may be counted toward the unit minimums: courses repeated to raise C-, D, or F grades; courses passed by examination; courses graded IP (In Progress); courses passed during summer session at UCSB or at another accredited college or university and transferred to UCSB. Students must obtain the approval of the dean of engineering to deviate from these requirements. Approval normally will be granted only in the case of medical disability, severe personal problems, or accident. Students enrolled in dual-degree programs must submit their proposed programs of study to the Associate Dean for Undergraduate Studies in the College of Engineering for approval. The individual programs must contain comparable standards of minimal academic progress. # 215-Unit and Quarter Enrollment Limitations The college expects students to graduate with no more than 215 units. College credit earned before high school graduation does not count toward the 215-unit maximum. This includes credit for Advanced Placement and International Baccalaureate examinations, and also college or university credit earned while still in high school. Students who are admitted as freshmen and remain continuously enrolled will be assessed after 12 regular quarters at UCSB, and transfer students admitted as juniors will be assessed after 9 regular quarters at UCSB, irrespective of whether they earn more than 215 units during that period. Summer session does not count as a regular quarter in this calculation, but units earned in summer session do apply toward the 215-unit maximum. With the exception of summer sessions, if students leave UCSB and earn a large number of units at one or more other academic institutions while they are away, the number of quarters allowed at UCSB will be reduced in proportion to the number of terms completed elsewhere. College policy requires students to secure specific approval to continue enrollment beyond the quarter and unit limits noted above. Students who think they may exceed both the quarter limitations and 215 units may submit a Proposed Schedule for Graduation (Study Plan) for consideration by the Associate Dean for Undergraduate Studies, but they should understand that approval is granted in limited circumstances. Note: The College of Engineering will not accept students from the College of Creative Studies or the College of Letters and Science after they have completed 105 units, regardless of their expected unit total at graduation. # Five-Year B.S./M.S. Degree Programs **Computer Engineering.** A combined B.S./M.S. program in Computer Engineering provides an opportunity for outstanding undergraduates to earn both degrees in five years. The M.S. degree will be earned in either the Department of Computer Science or the Department of Electrical and Computer Engineering, while the B.S. degree is earned in Computer Engineering. Additional information about this program is available from the Undergraduate Studies Office and interested students should contact the Office early in their junior year, because the junior year class schedule will be different from other undergraduates. Transfer students should notify the Office of their interest in the program at the earliest possible opportunity. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements. including university requirements for academic residence and units of coursework. Computer Science. A combined B.S./M.S. program in computer science provides an opportunity for outstanding undergraduates to earn both degrees in five years. Additional information is available from the computer science graduate program assistant or online at: www.cs.ucsb.edu/ undergraduate/. Interested students may apply after completing at least 3 upper division computer science courses, but before the beginning of the final year in the B.S. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework. Electrical Engineering. A combined B.S./M.S. program in Electrical Engineering provides an opportunity for outstanding undergraduates to earn both degrees in five years. Interested students should contact the Office of Undergraduate Studies early in the junior year, because the junior year class schedule will be different from other undergraduates. Transfer students should notify the Office of their interest in the program at the earliest opportunity. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework. Materials. A combined B.S. Engineering/ M.S. Materials program provides an opportunity for outstanding undergraduates in chemical, electrical, or mechanical engineering to earn both of these degrees in five years. This program enables students to develop all of the requisite knowledge in their core engineering disciplines and to complement this with a solid background in materials. This combination provides highly desirable training from an industrial employment perspective and capitalizes on the strengths of our internationally renowned materials department. There is a five-year option for students who are pursuing a B.S. in Chemistry in the College of Letters and Science to complete an M.S. degree in Materials. Interested students should contact the Undergraduate Advisor in the Department of Chemistry & Biochemistry for additional information. ### International Baccalaureate Higher Level Exam (With Score of 5 or Higher) | Exam | Units | GE Credit | UCSB Equivalent | |--------------------------------|-------|--------------------------|--------------------------------| | Biology | 8 | C: 1 course | MCDB 20/EEMB 20 | | Business & Management | 8 | None | None | | Chemistry | 8 | C: 1 course# | Natural Science 1B | | Computer Science | 8 | C: 1 course# | Computer Science 5NM | | Design Technology | 8 | None | None | | Economics | 8 | Pending | Pending | | English (A1 level) | | - | - | | Score of 5 | 8 | Entry Level Writing | Writing 1, 1E, 1LK | | Score of 6 | 8 | Writing 2 | Writing 1, 1E, 1LK, 2, 2E, 2LK | | Score of 7 | 8 | Writing 2, 50 | Writing 1, 1E, 2, 2E, 50, 50E | | Foreign Languages | 8 | В | Levels 1-6 | | Geography | 8 | D: 1 course | None | | History of Africa | 8 | E: 1 course+ | None | | History of the Americas | 8 | E: 1 course | None | | History of East/South Asia | 8 | E: 1 course+ | None | | History of Europe | 8 | E: 1 course [^] | History 4C | | History of S. Asia/Middle East | 8 | E: 1 course+ | None | | Islamic History | 8 | E: 1 course+ | None | | Math | 8 | C: 1 course# | None | | Music | 8 | F: 1 course | None | | Philosophy | 8 | E: 1 course | None | | Physics | 8 | C: 1 course# | Natural Science 1A, Physics 10 | | Psychology | 8 | D: 1 course | None | | Social & Cultural Anthro. | 8 | D: 1 course | Anthropology 2 | | Theater | 8 | F: 1 course | None | | Visual Arts | 8 | F: 1 course | None | | | | | | - # course also satisfies the Quantitative Relationships Requirement - course also satisfies the World Cultures Requirement - ^ course also satisfies the European Traditions Requirement # **College Board Advanced Placement Credit** | Advanced Placement Exam with score of 3, 4, or 5 | Units
Awarded | General Ed.
Course Credit | UCSB Course Equivalent (You may not enroll in these courses for credit at UCSB) | |---|------------------|------------------------------|---| | Art History | 8 | F: 1 course | Art History 1 | | *Art Studio 2D Design Portfolio | 8 | none | Art Studio 18 | | *Art Studio 3D Design Portfolio | 8 | none | | | *Art Studio Drawing Portfolio | 8 | none | | | Biology | 8 | C: 1 course | EEMB 20, MCDB 20, Natural Science 1C | | Chemistry | 8 | C: 1 course# | Natural Science 1B | | Chinese
Language & Culture | • | 11.4 | | | With score of 3 With score of 4 | 8
8 | H: 1 course
H: 1 course | | | With score of 5 | 8 | H: 1 course | | | Comparative Government and Politics | 4 | D: 1 course | | | +Computer Science A | 2 | none | | | +Computer Science AB | 4 | C: 1 course# | Computer Science 8 | | Economics – Macroeconomics | 4 | D: 1 course | computer colonies c | | Economics – Microeconomics | 4 | D: 1 course | | | *English – Composition and Literature | | | | | or Language and Composition | | | | | With score of 3 | 8 | Entry Level Writing | Writing 1, 1E, 1LK | | With score of 4 | 8 | Writing 2 | Writing 1, 1E, 1LK, 2, 2E, 2LK | | With score of 5 | 8 | Writing 2, 50 | Writing 1, 1E, 1LK, 2, 2E, 2LK, 50, 50E, 50LK | | Environmental Science | 4 | C: 1 course | Environmental Studies 2 | | European History | 8 | E: 1 course | no equivalent | | French Language | 0 | H: 1 course | Franch 1 2 | | With score of 3 With score of 4 | 8
8 | H: 1 course
H: 1 course | French 1-3
French 1-4 | | With score of 5 | 8 | H: 1 course | French 1-5 | | French Literature | O | 11. 1 course | TICHCH I-O | | With score of 3 | 8 | H: 1 course | French 1-5 | | With score of 4 or 5 | 8 | H: 1 course | French 1-6 | | German Language | | | | | With score of 3 | 8 | H: 1 course | German 1-3 | | With score of 4 | 8 | H: 1 course | German 1-4 | | With score of 5 | 8 | H: 1 course | German 1-5 | | Human Geography | 4 | none | no equivalent | | Italian Language & Culture | 0 | 11.4 | H-P40 | | With score of 3 | 8
8 | H: 1 course | Italian 1-3 | | With score of 4 With score of 5 | o
8 | H: 1 course
H: 1 course | Italian 1-5
Italian 1-6 | | Japanese Language & Culture | O | 11. 1 Course | Italian 1-0 | | With score of 3 | 8 | H: 1 course | | | With score of 4 | 8 | H: 1 course | | | With score of 5 | 8 | H: 1 course | | | Latin: Vergil | 4 | H: 1 course | Latin 1-3 | | Latin: Literature | 4 | H: 1 course | Latin 1-3 | | *•Mathematics – Calculus AB | 4 | C: 1 course# | Mathematics 3A, 15, 34A, or equivalent | | (or AB subscore of BC exam) | | _ | | | *†Mathematics – Calculus BC | 8 | C: 2 courses | Mathematics 3A, 3B, 15, 34A, 34B, or equivalent | | Music – Theory | 8 | F: 1 course | Music 11 | | *Physics – B | 8 | C: 1 course# | Physics 10, Natural Science 1A | | *Physics – C (Mechanics) *Physics – C (Electricity & Magnetism) | 4
4 | C: 1 course#
C: 1 course# | Physics 6A and 6AL
Physics 6B and 6BL | | Psychology | 4 | D: 1 course# | Psychology 1 | | Spanish Language | 7 | D. 1 000136 | i Systiciogy i | | With score of 3 | 8 | H: 1 course | Spanish 1-3 | | With score of 4 | 8 | H: 1 course | Spanish 1-4 | | With score of 5 | 8 | H: 1 course | Spanish 1-5 | | Spanish Literature | | | | | With score of 3 | 8 | H: 1 course | Spanish 1-5 | | With score of 4 or 5 | 8 | H: 1 course | Spanish 1-6 | | Statistics | 4 | C: 1 course# | Communication 87, EEMB 30, Geography 17 | | II.C. Covernment and Delities | 4 | D: 1 co::::::: | PSTAT 5AA-ZZ, Psychology 5, Sociology 3 | | U.S. Government and Politics | 4
8 | D: 1 course | Political Science 12 no equivalent | | U.S. History
World History | 8
8 | D: 1 course | no equivalent
no equivalent | | vvoliu mistory | 0 | none | no equivalent | ^{*} A maximum of 8 units EACH in art studio, English, mathematics, and physics is allowed. # Also satisfies the quantitative relationship requirement in Area C. + Maximum credit for computer science exams is 4 units. † Consult the mathematics department about optional higher placement in calculus. • If you received a score of 5 on Mathematics-Calculus AB, see www.math.ucsb.edu/ugrad/placement.php # General University Requirements ### **UC Entry Level Writing Requirement** All students entering the University of California must demonstrate an ability to write effectively by fulfilling the Entry Level Writing requirement. The requirement may be met in one of the following ways prior to admission: - 1. by achieving a score of 680 or higher on the SAT II: Subject Test in Writing; - by achieving a score of 680 or higher on the Writing Section of the SAT Reasoning Test; - by achieving a score of 30 or better on the ACT Combined English/Writing test: - by achieving a score of 3 or higher on the College Board Advanced Placement Examination in English Composition and Literature or English Language and Composition; - by passing the UC systemwide Analytical Writing Placement Examination while in high school; - by achieving a score of 6 or higher on the International Baccalaureate (standard level) English A1 Examination. - by achieving a score of 5 or higher on the International Baccalaureate (higher level) English A Examination; - by entering the university with transcripts showing the completion of an acceptable 3-semester unit or 4-quarter unit course in English composition equivalent to Writing 2 at UCSB, with a grade of C or better. Students who have not taken the Analytical Writing Placement examination and who have not met the UC Entry Level Writing Requirement in one of the other ways listed above will be required to take the examination during their first quarter at UCSB (check with Writing Program for examination time and location). An appropriate score on the examination will satisfy the requirement. Only one UC examination may be taken — either the systemwide Entry Level Examination while in high school or the examination given at UCSB; and neither may be repeated. Students who enter UCSB without having fulfilled the university's Entry Level Writing requirement and (if they have not previously taken the systemwide examination) who do not achieve an appropriate score on the examination given on campus must enroll in Writing 1, 1E or Linguistics 12 within their first year at UCSB. A grade of C or higher is needed to satisfy the requirement. Students who earn a grade of C- or lower in will be required to repeat the course in successive quarters until the requirement is satisfied. Once students matriculate at UCSB, they may not fulfill the requirement by enrolling at another institution. Transfer courses equivalent to Writing 2 or 50 will not be accepted for unit or subject credit unless the UC Entry Level Writing requirement has already been met. Students will only be allowed to meet the Area A requirement of the General Education Requirements with courses taken after satisfying the UC Entry Level Writing requirement. The Entry Level Writing requirement must be completed by the end of the third quarter of matriculation. Students who do not meet this deadline will be blocked from further enrollment at UCSB; ESL students should consult with the Writing Program. # American History and Institutions Requirement The American History and Institutions requirement is based on the principle that American students enrolled at an American university should have some knowledge of the history and government of their country. You may meet this requirement in any one of the following ways: - by achieving a score of 3 or higher on the College Board Advanced Placement Examination in American History or American Government and Politics; or - by passing a non-credit examination in American history or American institutions, offered in the Department of History during the first week of each quarter. Consult the department for further information; or - by achieving a score of 650 or higher on SAT II: Subject Test in American History; or - 4. by completing one four-unit course from the following list of courses: Anthropology 131 Art History 121A-B-C, 136H Asian American Studies 1, 2 Black Studies 1, 6, 20, 60A-B, 103, 137E, 169AR-BR-CR Chicano Studies 1A-B-C, 144, 168A-B, 174, 188A-B-C Economics 113A-B, 119 English 133AA-ZZ, 134AA-ZZ, 137A-B, 138C, 191 **Environmental Studies 173** Feminist Studies 155A, 159B-C History 11A, 17A-B-C, 17AH-BH-CH, 105A, 159B-C, 160A-B, 161A-B, 164C, 164IA-IB, 164PR, 165, 166A-B-C-LB, 168A-B, 169AR-BR-CR, 169M, 172A-B, 173T, 175A-B, 176A-B, 177, 178A-B, 179A-B Military Science 27 Political Science 12, 115, 127, 151, 152, 153, 155, 157, 158, 162, 165, 167, 168, 174, 176, 180, 185 Religious Studies 7, 14, 61A-B, 114B, 151A-B, 152 Sociology 137E, 140, 144, 155A, 157 Theater 180A-B Courses used to fulfill the American History and Institutions requirement may also be applied to General Education or major requirements, or both where appropriate. Equivalent courses taken at other accredited colleges or universities, in UC Extension, or in summer session may be acceptable. Students who transfer to UCSB from another campus of the University of California where the American History and Institutions Requirement has been considered satisfied will automatically fulfill the requirement at UCSB. International students on a nonimmigrant visa may petition for a waiver of this requirement through the Director of International Students and Scholars. ### College of Engineering General Education Requirements The aims of the General Education Program in the College of Engineering are to provide a body of knowledge of general intellectual value that will give the student a broad cultural base and to meet the objectives of the engineering profession. An appreciation and understanding of the humanities and social sciences are important in making engineers aware of their social responsibilities and enabling them to consider related factors in the decision-making process. Students in the College of Engineering must complete the General Education requirements in order to qualify for graduation. Students are reminded that other degree requirements exist and that they are responsible for familiarizing themselves with all bachelor's degree requirements. Not all of the courses listed in this publication are offered every quarter. Please see the GOLD system for General Education courses offered during a particular quarter. It should be noted that for College of Engineering transfers who completed IGETC (Intersegmental General
Education Transfer Curriculum), it may be used to substitute for the lower division general education and breadth requirements only. To complete the depth and writing requirements, those students will still be required to complete at least two upper division general education courses from General Subject Areas D, E, F, G, or H at UCSB after transfer (unless the student completed a year-long sequence equivalent to one of the Depth Requirement sequences as part of the IGETC program). Students who have questions about the General Education requirements should consult with the advisors in College of Engineering Office of Undergraduate Studies. # GENERAL SUBJECT AREA REQUIREMENTS A total of 8 courses is required to satisfy the General Education requirements of the College of Engineering. All students must follow the pattern of distribution shown below: # I. Area A: English Reading and Composition Computer Science students must complete Writing 2; and Writing 50, 107T, or 109ST. All other engineering majors are required to complete Writing 2E and Writing 50E during their first year at UCSB. Students that are unable to meet this requirement should consult with the College of Engineering Office of Undergraduate Studies. NOTE: Students must complete the UC Entry Level Writing Requirement before enrolling in courses that fulfill the Area A requirement of the General Education program. Please refer to page 8 of this publication or the UCSB General Catalog for a list of ways to satisfy the UC Entry Level Writing requirement. ### II. Areas D, E, F, G & H: Social Sciences, Culture and Thought, the Arts, Literature and Foreign Language At least 6 courses must be completed in these areas: Areas D and E: A minimum of 2 courses must be completed in areas D and E. Areas F and G: A minimum of 2 courses must be completed in areas F and G. The general provisions relating to General Education requirements, as listed on page 9, must be followed when completing courses in Areas D, E, F, G, and H. A complete listing of courses, which will satisfy all these requirements starts on page 10. # SPECIAL SUBJECT AREA REQUIREMENTS In the process of fulfilling the General Education General Subject Areas D through H requirements, students must complete the following Special Subject Area requirements: 1. Writing Requirement. At least four designated General Education courses that meet the following criteria: (1) the courses require one to three papers totaling at least 1,800 words, exclusive of elements such as footnotes, equations, tables of contents, or references; (2) the required papers are independent of or in addition to written examinations; and (3) the paper(s) is a significant consideration in the assessment of student performance in the course. Courses marked with an asterisk (*) on the lists in this document apply to this requirement. The writing requirement may be met only with designated UCSB courses. NOTES: ENGR 101 and ENGR 103 may be used as a writing requirement class, even by those students for whom ENGR 101 is required. New transfer students should consult with the College Undergraduate Studies Office regarding this requirement. Depth Requirement. At least two upper division General Education courses from two separate departments, in each of which a student has already successfully completed one General Education course. Alternatively, this entire depth requirement may be satisfied by option 2, completion of one of the following sequences: Chicano Studies 1A-B-C, Comparative Literature 30A-B-C, French 50AX-BX-CX, History 2A-B-C, History 2AH-BH-CH, History 4A-B-C, History 4AH-BH-CH, History 17A-B-C, History 17AH-BH-CH, Philosophy 20A-B-C, Religious Studies 80A-B-C or any three courses from Art History 6A-B-C-D-DS-DW-E-F-G-H-K. Students selecting this option must complete all three courses in the sequence. Selection of this option does not change the number of courses required. Option three is to complete an approved minor or double major, in a discipline encompassed by areas D, E, F, or G. This can be done by petition only, and petitions must be submitted at least three quarters in advance of the student's expected graduation date. Only courses from General Subject Areas D, E, F, G, or H may be used to meet the depth requirement. Ethnicity Requirement. At least one course that focuses on the history and the cultural, intellectual, and social experience of one of the following groups: Native Americans, African Americans, Chicanos/Latinos, or Asian Americans. Alternatively, students may take a course that provides a comparative and integrative context for understanding the experience of oppressed and excluded racial minorities in the United States. Courses that meet this requirement are marked with an ampersand (&) on the lists in this document. 4. European Traditions Requirement. At least one course that focuses on European cultures or cultures within the European Tradition. Courses that meet this requirement are marked with a caret (^) on the lists in this document. ### Other Regulations: - No more than two courses from the same department may apply to the General Education areas D, E, F, G, and H. (Except if a student completes one of the specific course sequences, such as History 4A-B-C, listed above for the depth requirement.) - A course listed in more than one general subject area can be applied to only one of these areas. (Example: Art History 6A cannot be applied to both areas E and F.) However, a course can be applied towards a single general subject area and any special subject areas which that course fulfills. (Example: Black Studies 38A can be applied to the Writing and Ethnicity requirements in addition to the Area G requirement.) - Some courses taken to satisfy the General Education requirements may also be applied simultaneously to the American History and Institutions requirement. Such courses must be on the list of approved General Education courses and on the list of approved American History and Institutions courses. - Courses taken to fulfill a General Education requirement may be taken on a P/NP basis, if the course is offered with that grading option (refer to GOLD for the grading option for a particular course). ### **GENERAL EDUCATION COURSES** NOTE: The course listing in this booklet reflects the courses accepted for use towards the General Education requirements at the time of this document's publication and is subject to change. Please refer to GOLD for a listing of acceptable courses during the given quarter. Information in GOLD supersedes the information given here. ### AREA A - ENGLISH READING AND COMPOSITION ### 2 courses required Writing 2 or 2E and Writing 50, 50E, 107T or 109ST are required, and must be taken for letter grades. ### AREAS D AND E - SOCIAL SCIENCES, CULTURE & THOUGHT ### 2 course minimum ### **Area D: Social Sciences** Objective: To provide an understanding of what determines or influences the behavior and beliefs of individuals and groups. | influe | nces the behavior and be | liefs of individuals and groups. | |------------------|------------------------------|---| | | Anthropology 2 | Introductory Cultural Anthropology | | * | Anthropology 3 | Introductory Archaeology | | | Anthropology 3SS | Introduction to Archaeology | | | Anthropology 7 | Introduction to Biosocial Anthropology | | | Anthropology 25 | Violence and the Japanese State (Same as JAPAN 25) | | | Anthropology 103A | Anthropology of China | | | Anthropology 103B | Anthropology of Japan | | | Anthropology 103C | Anthropology of Korea | | | Anthropology 109 | Human Universals | | | Anthropology 110 | Technology and Culture | | * | Anthropology 122 | Anthropology of World Systems | | | Anthropology 130A-B | Third World Environments | | (a) | Anthropology 131 | North American Indians | | | Anthropology 134 | Modern Cultures of Latin America | | * | Anthropology 135 | Modern Mexican Culture | | | Anthropology 136 | Peoples and Cultures of the Pacific | | | Anthropology 137 | The Ancient Maya | | * | Anthropology 141 | Agriculture and Society in Mexico: Past | | | | and Present | | | Anthropology 142 | Peoples and Cultures of India | | | Anthropology 156 | Understanding Africa | | * | Anthropology 176 | Representations of Sexuality in Modern Japan | | @ & | Asian American Studies 1 | Introduction to Asian American History,
1850-Present | | @& | Asian American Studies 2 | American Migration since 1965 | | & | Asian American Studies 3 | Asian American Personality and Identity | | & | Asian American Studies 6 | Sociology of Asian America | | & | Asian American Studies 7 | Asian American Globalization | | & | Asian American Studies 8 | Introduction to Asian American Gender and Sexuality | | & | Asian American Studies 100AA | Chinese Americans | | &* | Asian American Studies 100FF | South Asian Americans | | & | Asian American Studies 107 | Third World Social Movements | | &* | Asian American Studies 111 | Asian American Communities and
Contemporary Issues | | & | Asian American Studies 119 | Asian Americans and Race Relations | | &* | Asian American Studies 131 | Asian American Women's History | | &* | Asian American Studies 136 | Asian American Families | | &* | Asian American Studies 137 | Multiethnic Asian Americans | | @ & * | Black Studies 1, 1H | Introduction to Afro-American Studies | | & | Black Studies 4 | Critical Introduction to Race and Racism | | @ & * | Black Studies 6 | The Civil Rights Movement | | & | Black Studies 15 | The Psychology of Blacks | | | Black Studies 100 | Africa and United States Policy | | &* | Black Studies 102 | Black Radicals and the Radical Tradition | | @&* | Black Studies 103 | The Politics of Black Liberation-The Sixties | | & | Black Studies 122 | The Education of Black Children | | * | Black Studies 124 | Housing, Inheritance and Race | | * | Black Studies 125 | Queer Black Studies | | *
Black Studies 171 * Black Studies 174 | 0.S.
@&* | Black Studies 169AR-BR-CR | Afro-American History (Same as
HIST 169AR-BR-CR) | |--|---|--|--| | # Black Studies 174 Chicano Studies 114 Chicano Studies 114 Chicano Studies 140 Chicano Studies 140 Chicano Studies 140 Chicano Studies 151 Chicano Studies 151 Chicano Studies 151 Chicano Studies 151 Chicano Studies 158 Chicano Studies 158 Chicano Studies 158 Chicano Studies 172 Chicano Studies 173 Chicano Studies 173 Chicano Studies 173 Chicano Studies 174 Chicano Studies 175 Chicano Studies 175 Chicano Studies 176 Chicano Studies 176 Chicano Studies 177 Chicano Studies 178 179 Chicano Studies 189 Chican | * | Black Studies 171 | | | Chicano Studies 114 Chicano Studies 140 Chicano Studies 140 Chicano Studies 151 Chicano Studies 172 Chicano Studies 172 Chicano Studies 173 Chicano Studies 173 Chicano Studies 174 Chicano Studies 175 176 Chicano Studies 177 Chicano Studies 178 Chicano Studies 178 Chicano Studies 178 Chicano Studies 178 Chicano Studies 189 180 Thicdboal Migration, Transnationalism in Chicano/a Contexts Democracy and Diversity Communication Introduction to Communication Last Asian Cultural Studies 190 Environmental Studies 130A-B | * | | | | & Chicano Studies 140 & Chicano Studies 144 & Chicano Studies 155W & Chicano Studies 168A-B & Chicano Studies 175 & Chicano Studies 175 & Chicano Studies 175 & Chicano Studies 173 & Chicano Studies 173 & Chicano Studies 173 & Chicano Studies 173 & Chicano Studies 174 & Chicano Studies 174 & Chicano Studies 175 Chicano Studies 175 & Chicano Studies 176 & Chicano Studies 176 & Chicano Studies 176 & Chicano Studies 177 & Chicano Studies 178 & Chicano Studies 179 & Chicano Studies 189C | @&* | Chicano Studies 1A-B-C | Introduction to Chicano/a Studies | | & Chicano Studies 144 & Chicano Studies 154 & Chicano Studies 155 & Chicano Studies 155 & Chicano Studies 175 & Chicano Studies 172 | | | <u> </u> | | @ A * Chicano Studies 144 The Chicano Community (Same as SOC 144) & Chicano Studies 155W The Chicano Community (Same as SOC 144) @ Chicano Studies 155W The Chicano Community (Same as HIST 168A-B) & Chicano Studies 172 History of the Chicano (Same as HIST 168A-B) & Chicano Studies 173 Law and Civil Rights @ Chicano Studies 174 Law and Civil Rights & Chicano Studies 175 Chicano Studies 176 Chicano Studies 176 Chicano Studies 178A Chicano Studies 179 & Chicano Studies 179 Chicano Studies 189C Chicano Studies 189C The Global Underground Cultural Studies 40 East Asian Cultural Studies 102 Communistion 1 East Asian Cultural Studies 102 Vietnamese History (Same as HIST 189A) Economics 1 Economics 2 Principles of Economics - Micro Principles of Economics - Macro Introduction to Economics - Econ | | | | | & Chicano Studies 151 | | | | | & Chicano Studies 155W & Chicano Studies 168A-B & Chicano Studies 173 Chicano Studies 173 Chicano Studies 174 Chicano Studies 175 Chicano Studies 175 Chicano Studies 175 Chicano Studies 176 Chicano Studies 177 Chicano Studies 178A Chicano Studies 178 Chicano Studies 178 Chicano Studies 179 Chicano Studies 189C 189B Chicano Studies 189B Chicano Studies 189C Chicano Studies 189B Cultures of Global Information to Communication Cender and Sexuality in Modern Asia Studies 40 Principles of Economics - Micro Micro Color Reseauch Women Asocial Justice Women, Socier | _ | | | | ### Chicano Studies 168A-B ### Chicano Studies 172 ### Chicano Studies 173 ### Chicano Studies 174 ### Chicano Studies 175 ### Chicano Studies 175 ### Chicano Studies 176 ### Chicano Studies 176 ### Chicano Studies 178A ### Chicano Studies 178A ### Chicano Studies 178A ### Chicano Studies 178A ### Chicano Studies 189B | | | | | &* Chicano Studies 172 & Chicano Studies 173 Chicano Studies 174 &* Chicano Studies 175 Chicano Studies 175 Chicano Studies 176 Chicano Studies 176 Chicano Studies 176 Chicano Studies 177 Chicano Studies 178 Chicano Studies 178 Chicano Studies 179 Chicano Studies 189C 190C Communication 1 East Asian Cultural Studies 40 East Asian Cultural Studies 100 East Asian Cultural East Asian Cultural East Asian Cultural East Asian Cultural Chicano Studies 11 Economics 1 East Asian Cultural Chicano Studies 11 East Asian Cultural Chicano Studies 11 East Asian Cultural | | | | | & Chicano Studies 173 Chicano Studies 174 & Chicano Studies 175 Chicano Studies 176 Chicano Studies 178 Chicano Studies 178 Chicano Studies 179 Chicano Studies 189 Ch | | | • | | ### Chicano Studies 174 | &* | Chicano Studies 172 | Law and Civil Rights | | &* Chicano Studies 175 Chicano Studies 178A Chicano Studies 178A Chicano Studies 178A Chicano Studies 189C Cultures of Global Lization Comparative Social Movements Chicano Studies Introduction to Communication Introduction to Communication Compares History (Same as HIST 189A) Cienter Asian Cultural Comparation Transnationalism in Chicano's Global Environment Studies of Economics - Micro Principles | | | | | Chicano Studies 176 Chicano Studies 178A Chicano Studies 179 Chicano Studies 189B Chicano Studies 189B Chicano Studies 189B Chicano Studies 189C Chicano Studies 189B Chicano Studies 189C Chicano Studies 189B Chicano Studies 189C Chicano Studies 189B Chicano Studies 189C 189A East Asian Cultural Studies 109 Economics 1 Economics 2 Economics 1 Environmental Studies 130A-B Environmental Studies 132 Feminist Studies 20 or 20H Feminist Studies 20 or 20H Feminist Studies 20 or 30H Feminist Studies 30 or 30H Feminist Studies 50 or 50H Feminist Studies 50 or 50H Feminist Studies 50 or 50H Feminist Studies 133 Chicano Studies 187C Wornen, Society and Culture Women, Cu | _ | | | | * Chicano Studies 178A Chicano Studies 189B Chicano Studies 189C Cultures of Global Environmental Studies 110T Chicano to Economics - Micro Principles of | &* | | | | * Chicano Studies 179 * Chicano Studies 189 Chicano Studies 189C Cultures of Globalization Introduction to Communication Gender and Sexuality in Modern Asia Studies 109 Feconomics 1 Economics 2 Economics 1 Environmental Studies 1 Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 130 Commiss Studies 20 or 20H Feminist Studies 20 or 20H Feminist Studies 30 or 30H Feminist Studies 60 or 60H Feminist Studies 60 or 60H Feminist Studies 17C & Feminist Studies 60 or 60H Feminist Studies 153 Geography 2 Geography 2 Geography 2 Geography 2 Geography 108 109 Geogra | | Cilicano Studies
176 | | | * Chicano Studies 179 & Chicano Studies 189B Chicano Studies 189C Communication 1 East Asian Cultural Studies 189A Economics 1 Economics 2 Economics 2 Economics 109 * Environmental Studies 130A-B Environmental Studies 100 r 30H * Feminist Studies 20 or 20H * Feminist Studies 50 or 50H & Feminist Studies 60 r 60H * Feminist Studies 117C & * Feminist Studies 153 | & | Chicano Studies 178A | | | Chicano Studies 189B Chicano Studies 189C Communication 1 East Asian Cultural Studies 40 East Asian Cultural Studies 189A Economics 2 Economics 1 Economics 2 Economics 109 Environmental Studies 130A-B Environmental Studies 132 Feminist Studies 20 or 20H Feminist Studies 50 or 50H Feminist Studies 60 or 60H Feminist Studies 60 or 60H Feminist Studies 17C © * Feminist Studies 153 Geography 2 Geography 2 Geography 5 Geography 2 Geography 108 109 Geography 108 Geogra | | | | | Chicano Studies 189C * Communication 1 East Asian Cultural Studies 40 East Asian Cultural Studies 189A Economics 1 Economics 2 Economics 109 * Environmental Studies 13 * Feminist Studies 130 or 30H * Feminist Studies 30 or 30H * Feminist Studies 30 or 30H * Feminist Studies 50 or 50H & * Feminist Studies 17C & * Feminist Studies 17C & * Feminist Studies 153 @ * Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 109 Geography 108 Geography 108 Geography 109 Geography 108 Geography 109 Geography 109 Geography 108 Geography 109 Geography 109 Geography 109 Geography 108 Geography 109 20 Geography 20 Geography 30 Geography 6 Geography 109 10 | * | Chicano Studies 179 | Democracy and Diversity | | * Communication 1 East Asian Cultural Studies 40 East Asian Cultural Studies 189A Economics 2 Economics 1 Environmental Studies 130A-B 10 or 30H Feminist Studies 20 or 20H Feminist Studies 50 or 50H Environmental Studies 17C 1 | & | | | | East Asian Cultural Studies 40 East Asian Cultural Studies 189A Economics 1 Economics 2 Economics 109 * Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 132 * Feminist Studies 30 or 30H Feminist Studies 30 or 30H Feminist Studies 30 or 30H Feminist Studies 50 or 50H Feminist Studies 17C * Feminist Studies 17C * Feminist Studies 153 159B-C Geography 2 Geography 5 Geography 20 Geography 100 Geography 108 Geography 108 Geography 108 Geography 108 Geography 108 Geography 109 * Global Studies 1 * History 17A-B-C 17A * History 159B-C * History 16A-B | | | | | Studies 40 East Asian Cultural Studies 189A Economics 1 Economics 2 Economics 109 * Environmental Studies 1 Environmental Studies 132 * Feminist Studies 20 or 20H * Feminist Studies 50 or 50H &* Feminist Studies 50 or 50H &* Feminist Studies 117C * Feminist Studies 17C * Feminist Studies 17C * Feminist Studies 18DB-C Geography 2 Geography 2 Geography 5 Geography 20 Geography 108 Geograph | * | | | | East Asian Cultural Studies 189A Economics 1 Economics 2 Economics 109 Environmental Studies 130A-B Environmental Studies 132 Feminist Studies 20 or 20H Feminist Studies 60 or 60H Feminist Studies 60 or 60H Feminist Studies 132 Feminist Studies 50 or 50H Feminist Studies 60 or 60H Feminist Studies 50 or 50H Feminist Studies 50 or 60H 112C Feminist Studies 153 159B-C Feminist Studies 153 164 Feminists and Society and Culture Feminist Studies 164 Feminist Studies 164 Feminists and Society and Culture in the Middle Ages Feminist Studies 164 Feminists and Society and Edulary Instead States Femilistory (Same as FEMST 117C & MEST 100A) Feminist Studies 164 Feminis | | | Gender and Sexuality in Modern Asia | | Studies 189A Economics 1 Economics 2 Economics 2 Economics 109 * Environmental Studies 1 Environmental Studies 130A-B Environmental Studies 132 * Feminist Studies 20 or 20H * Feminist Studies 50 or 50H * Feminist Studies 50 or 50H * Feminist Studies 60 or 60H * Feminist Studies 60 or 60H * Feminist Studies 117C & * Feminist Studies 117C & * Feminist Studies 153 @ * Feminist Studies 153 @ * Feminist Studies 153 @ * Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 108 Geography 108 Geography 150 * Global Studies 1 * Global Studies 1 * Global Studies 1 * History 17A-B-C @ * History 17A-B-C # History 17A # History 117A # History 117A @ * History 117A # History 117C # History 117A # History 117A # History 117A # History 159B-C # History 16A-B 17A-B-C @ # History 16A-B 17A-B-C @ # History 16A-B | | | Vietnamese History (Same as HIST 1894) | | Economics 2 Economics 109 Economics 109 Environmental Studies 1 Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 30 or 30H Feminist Studies 30 or 30H Feminist Studies 50 or 50H Feminist Studies 60 or 60H Feminist Studies 117C Women, Development, and Global Environment Women, Society and Culture Women, Development, and Global Environment Women, Development, and Global Izonironment Gobal Funnisms and Social Justice Women of Color: Race, Class and Ethnicity Women in American History (Same as SOC 153) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography 108 Geography 108 Geography 150 Global Studies 1 Global Studies 1 Global Studies 2 Global Studies 1 Global Studies 2 Global Studies 1 History 7 Gex History 11A History 7 Gex History 17A-B-C History 105A History 105A History 117A History 117C Women in American People The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The American People (Honors) Anthropology of Korea (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Goolal and Revolutionary America History 16A-B Histo | | | victualitiese History (Saine as Hist 16971) | | Economics 2 Economics 109 Evironmental Studies 1 Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 130A-B Environmental Studies 130 and the primits Studies 20 or 20H Feminist Studies 30 or 30H Feminist Studies 50 or 50H Feminist Studies 60 or 60H Feminist Studies 117C Women, Society and Culture Women, Development, and Globalization Global Feminisms and Social Justice Women of Color: Race, Class and Ethnicity Women of Color: Race, Class and Ethnicity Women and Work (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions Geography 108 Geography 108 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 1 Global Studies 1 History 7 Get History 17A History 17A History 17A History 117A History 117A Women in American History of Public Policy History of America's Racial and Ethnic Minorities The American People (Honors) Anthropology of Korea (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FIEMST 159B-C World Regions Geography of the United States Introduction to Law and Society Great Issues in the History of Public Policy History 105A History 17A History 17A History 17C Women in American History (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 117C & ME ST 100A Momen and Work (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 117C & ME ST 100A Momen in American History (Same as FEMST 159B-C) Women in American History (Same as FEMST 159B-C) Global Studies 1 Feminist Studies 1 Feminist Studies 1 Feminist Studies 1 Feminist Studies 2 Global Studies 1 Feminist Studies 2 Global 3 Global Studies 4 Global Studies | | Economics 1 | Principles of Economics - Micro | | * Environmental Studies 1 Environmental Studies 130A-B Environmental Studies 132 * Feminist Studies 20 or 20H * Feminist Studies 30 or 30H * Feminist Studies 30 or 50H * Feminist Studies 60 or 60H * Feminist Studies 60 or 60H * Feminist Studies 117C * Feminist Studies 117C * Feminist Studies 117C * Feminist Studies 117C * Feminist Studies 153 @ * Feminist Studies 153 @ * Feminist Studies 153 # Feminist Studies 153 # Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 108 Geography 108 Geography 108 Geography 108 Geography 108 Geography 6 Geography 7 Geography 108 Geography 108 Geography 108 Geography 109 Geography 108 Geography 108 Geography 108 Geography 109 Geog | | Economics 2 | | | Environmental Studies 130A-B Environmental Studies 132 * Feminist Studies 20 or 20H * Feminist Studies 30 or 30H * Feminist Studies 50 or 50H &* Feminist Studies 60 or 60H * Feminist Studies 117C * Feminist Studies 117C * Women, Development, and Globalization Global Feminisms and Social Justice Women of Color: Race, Class and Ethnicity Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) * Feminist Studies 153 * Feminist Studies 159B-C Geography 2 Geography 5 Geography 150 Geography 108 Geography 108 Geography 108 Geography 108 Geography 109 0f Surfing Urban Geography Geography of Surfing Urban Geography Geography of Hunited States Global Studies 1 History 7 Great Issues in the History of Public Policy History 67 History 17A-B-C The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age The American People (Honors) Anthropology of Korea (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History 16A-B Afro-American History (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169A-CR) Politics and Public Policy in the United States American Cultural History | | | | | Environmental Studies 132 * Feminist Studies 20 or 20H * Feminist Studies 30 or 30H * Feminist Studies 50 or 50H * Feminist Studies 50 or 50H * Feminist Studies 60 or 60H * Feminist Studies 117C * Feminist Studies 153 (* * Feminist Studies 153 (* * Feminist Studies 159B-C Geography 2 Geography 2 Geography 5 Geography 108 109 Geography 109 Geography 109 Geography 109 * Global Studies 1 * Global Studies 2 Global Studies 11 * History 7 (* History 17AH-BH-CH History 82 # History 117A * History 117C * History 16AA-B * History 16AA-B * History 16BA-B *
History 16BA-B (* History 175A-B (* History 172A-B (* History 172A-B (* History 175A-B 16BA-B (* History 175A-B 17 | * | | | | * Feminist Studies 20 or 20H * Feminist Studies 30 or 30H * Feminist Studies 50 or 50H &* Feminist Studies 60 or 60H * Feminist Studies 60 or 60H * Feminist Studies 117C &* Feminist Studies 117C &* Feminist Studies 153 &* Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 108 Geography 150 * Global Studies 1 * Global Studies 1 * History 17A-B-C (A* History 17A-B-C AHistory 17A-B-C AHistory 117A * History 117A * History 117C 16A-B Hist | | | | | * Feminist Studies 30 or 30H * Feminist Studies 50 or 50H * Feminist Studies 60 or 60H * Feminist Studies 117C * Feminist Studies 117C * * Feminist Studies 117C * * Feminist Studies 153 (* * Feminist Studies 153 (* * Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 108 Geography 108 Geography 108 Geography 108 Geography 108 Geography 109 Geography 109 Geography 109 * Global Studies 1 * Global Studies 1 * History 7 (* * History 17A-B-C (* History 17A-B-C (* History 17A-B-C (* History 117C * History 117C (* * History 117C (* 16A-B * 16A | * | | | | * Feminist Studies 50 or 50H &* Feminist Studies 60 or 60H * Feminist Studies 117C &* Feminist Studies 117C &* Feminist Studies 153 &* Feminist Studies 153 &* Feminist Studies 159B-C Geography 2 Geography 2 Geography 20 Geography 108 Geography 108 Geography 150 * Global Studies 1 * Global Studies 1 * Global Studies 1 * History 7 &* History 17A-B-C &* History 17A-B-CH History 105A * History 117C 161A-B Histo | | Terminat Studies 20 of 2011 | | | * Feminist Studies 117C & * Feminist Studies 153 & * Feminist Studies 153 & * Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 Global Studies 1 * Global Studies 1 * History 17A-B-C @ * History 17AH-BH-CH History 17A History 117A * History 117A * History 117A # History 117C @ * History 117A # History 117C 117A # History 117A # History 117C 118A # History 119B-C # History 119B-C # History 119B-C # History 16A-B Histo | * | | | | # Feminist Studies 153 # Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 # Global Studies 1 # History 17A-B-C # History 17A-B-C # History 17AB-B-C # History 17AB-B-C # History 17AB-C # History 17AB-C # History 17AB-C # History 17AB-C # History 16A-B # History 11A # History 16A-B # History 11A # History 16A-B Histo | &* | Feminist Studies 60 or 60H | | | # Feminist Studies 153 # Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Geography 150 Geography 150 Geography 168 Geography 150 Geography 150 Geography 169 Geography 169 History 17A-B-C # History 17A-B-C # History 17AH-BH-CH History 82 History 117A # History 117A # History 117C # History 117C # History 117C # History 159B-C # History 16A-B 169AR-BR-CR # History 17A-B-C # History 17A-B-C # History 15A-B # History 159B-C # History 16A-B # History 16A-B # History 16A-B # History 16A-B # History 169AR-BR-CR # History 17A-B-C # History 17A-B-C # History 169AR-BR-CR # History 175A-B Mistory 175A | ~ | 1 chimist studies of of oor | Wolliell of Color. Race, Class and Edillicity | | @ * Feminist Studies 159B-CWomen in American History (Same as HIST 159B-C)Geography 2World RegionsGeography 5People, Place and EnvironmentGeography 108Geography of SurfingGeography 150Geography of the United States* Global Studies 1Global History, Culture, and Ideology* Global Studies 2Global History, Culture, and IdeologyGlobal Studies 11History 7* History 7Great Issues in the History of Public Policy# History 11AHistory of America's Racial and Ethnic Minorities@ * History 17A-B-CThe American People (Honors)@ * History 105AThe Atomic Age* History 117ATowns, Trade, and Urban Culture in the Middle Ages* History 117CWomen, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A)@ * History 161A-BWomen in American History (Same as FEMST 159B-C)@ & History 164A-BColonial and Revolutionary America History of American Working Class# History 169AR-BR-CRHistory of the Chicanos (Same as CH ST 168A-B)@ * History 172A-BAfro-American History (Same as BL ST 169AR-BR-CR)@ * History 175A-BAmerican Cultural History | | | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & | | Geography 2 Geography 5 Geography 108 Geography 150 of the United States Global Studies 1 Global History, Culture, and Ideology Global Studies 1 History 7 Great Issues in the History of Public Policy History 11A History of America's Racial and Ethnic Minorities # History 17A-B-C History 17AH-BH-CH History 105A History 117A # History 117A # History 117C # History 117C # History 117C # History 159B-C # History 161A-B # History 164A-B # History 169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 175A-B American Cultural History # More numbers and Environment Geography of Surfing the United States # History 172A-B # History 175A-B World Regions Geography of Surfing Geography of the United States # Hora History Geography of the United States # History 175A-B # History 175A-B American Cultural History | * | Feminist Studies 117C | Women, the Family, and Sexuality in the
Middle Ages (Same as HIST 117C &
ME ST 100A) | | Geography 5 Geography 20 Geography 108 Geography 150 Geography 150 Geography 150 Geography of the United States Global Studies 1 Global Studies 2 Global Studies 11 History 7 Get Itsues in the History of Public Policy History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117A History 117A History 117A History 117C We History 16A-B History 16A-B History 16A-B History 169AR-BR-CR We History 172A-B We History 169AR-BR-CR We History 175A-B History 175A-B We History 175A-B We History 175A-B We History 169AR-BR-CR We History 175A-B We History 175A-B American Cultural History We Decide Age Surfing We History 175A-B We History 175A-B We History 175A-B American Cultural History | * | Feminist Studies 117C Feminist Studies 153 | Women, the Family, and Sexuality in the
Middle Ages (Same as HIST 117C &
ME ST 100A)
Women and Work (Same as SOC 153)
Women in American History (Same as | | Geography 20 Geography 108 Geography 150 Geography 150 Geography 150 Geography 150 Geography 150 Geography of the United States Global Studies 1 Global Studies 2 Global Studies 11 History 7 Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities Geography 150 Minorities The American People The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Geography of Surfing Geography of Surfing Geography of the United States | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C | Women, the Family, and Sexuality in the
Middle Ages (Same as HIST 117C &
ME ST 100A)
Women and Work (Same as SOC 153)
Women in American History (Same as
HIST 159B-C) | | Geography 150 * Global Studies 1 * Global Studies 2 Global Studies 21 History 7 @ &* History 11A # History 17A-B-C # History 17AH-BH-CH History 105A # History 117C # History 117C # History 117C # History 159B-C # History 161A-B # History 169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 169AR-BR-CR # History 172A-B # History 175A-B # History 175A-B # History 161A-B # History 169AR-BR-CR # History 175A-B Global History, Culture, and Ideology Global Socioeconnomic and Political Processes Introduction to Law and Society Global Socioeconnomic and Political Processes Global History, Culture, and Ideology Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnomic and Political Processes Introduction to Law and Society Global Sccioeconnemic and Political Processes Introduction to Law and Society Global Sccioeconnemic and Political Processes Introduction to Law and Society Global Sccioeconnemic and Political Processes Introduction to Law and Society Global Sccioeconnemic and Political Processes Introduction to Law and Society Global Sccioeconnemic and Political Processes Introduction to Law and Society Global Processes Introduction to Law and Society Introduction to Law and Society Introduction to Law and Society Introduction to Amanca Politic Policy Introduction to Amanca Politi | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 | Women, the Family, and Sexuality in the
Middle Ages (Same as HIST 117C &
ME ST 100A)
Women and Work (Same as SOC 153)
Women in American History (Same as
HIST 159B-C)
World Regions | | * Global Studies 1 * Global Studies 2 Global Studies 2 Global Studies 11 * History 7 @ &* History 11A @ * History 17A-B-C @ * History 17AH-BH-CH History 105A * History 117C @ * History 117C @ * History 117C @ * History 117C @ * History 159B-C @ * History 16A-B 16BA-B @ # Histor | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment | | * Global Studies 2 Global Studies 11 * History 7 @ * History 11A # History 17A-B-C @ * History 17AH-BH-CH History 105A * History 117C # History 117C # History 117C # History 159B-C # History 161A-B # History 161A-B # History
169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 174A-B-C # History 175A-B # History 169AR-BR-CR # History 175A-B H | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography | | Global Studies 11 * History 7 @ * History 11A # History 17A-B-C @ * History 17AH-BH-CH History 105A # History 117C # History 159B-C # History 161A-B # History 161A-B # History 169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 175A-B # History 175A-B # History 169AR-BR-CR # History 175A-B | *
&*
@ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States | | * History 7 @ &* History 11A @ * History 17A-B-C @ * History 17AH-BH-CH History 82 @ History 105A * History 117A * History 117A * History 117A * History 117C @ * History 117C # History 117C # History 159B-C @ & History 161A-B # History 167CA-CB-CP @ & History 169AR-BR-CR @ * History 172A-B # History 172A-B # History 175A-B # Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities # Hamerican People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States # History 175A-B # History 175A-B # American Cultural History | *
&*
@ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 Global Studies 1 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology | | @ * History 17A-B-C @ * History 17AH-BH-CH History 82 @ History 117A @ * History 105A # History 117A # History 117C # History 117C # History 159B-C @ # History 161A-B # History 167CA-CB-CP @ # History 169AR-BR-CR @ # History 172A-B History 175A-B History 175A-B History 175A-B History 175A-B History 160PC History 160PAR-BR-CR History 175A-B History 175A-B History 175A-B History 175A-B History 172A-B History Calculated American History History 175A-B History Cultural History | *
&*
@ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 Global Studies 1 Global Studies 2 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes | | Minorities Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Afro-American History of American Working Class History 169AR-BR-CR Winited Ages Women in American Working Class History of American History (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Winited Ages Women in American Working Class History of American Working Class History of the Chicanos (Same as BL ST 169AR-BR-CR) Afro-American History (Same as BL ST 169AR-BR-CR) Winited Ages Women in American History (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Afro-American History (Same as BL ST 169AR-BR-CR) Afro-American People The American A | *
&*
@ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society | | # History 17AH-BH-CH History 82 # History 105A # History 117A # History 117A # History 117C # History 117C # History 159B-C # History 161A-B # History 167CA-CB-CP # History 169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 175A-B The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States American Cultural History | *
@ *
*
* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy | | History 82 Anthropology of Korea (Same as KOR 82) History 105A History 117A History 117A History 117C Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) History 159B-C Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History 167CA-CB-CP History 169AR-BR-CR History 169AR-BR-CR Afro-American History (Same as BL ST 169AR-BR-CR) History 172A-B American Cultural History | *
&*
@ *
*
* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities | | # History 105A * History 117A * History 117A * Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) # History 159B-C # History 161A-B # History 167CA-CB-CP # History 167CA-CB-CP # History 168A-B # History 169AR-BR-CR # History 169AR-BR-CR # History 172A-B # History 175A-B American Cultural History | * &* @ * * * @ &* * @ * * @ * * @ * * * @ * * * @ * * * @ * * * * @ * * * * @ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People | | * History 117A * History 117C * History 117C * History 159B-C @ * History 161A-B * History 167CA-CB-CP @ & History 168A-B @ * History 169AR-BR-CR @ * History 169AR-BR-CR @ # History 172A-B # History 175A-B * American Cultural History Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the
Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages Women, the Family, and Sexuality in the Middle Ages ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of He Chicanos (Same as CH ST 169AR-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States | * &* @ * * * @ &* * @ * * @ * * @ * * * @ * * * @ * * * @ * * * * @ * * * * @ * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People | | * History 117C * Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) * Women in American History (Same as FEMST 159B-C) * History 161A-B * History 167CA-CB-CP * History 167CA-CB-CP * History 168A-B * History 169AR-BR * History 169AR-BR-CR * History 169AR-BR-CR * History 169AR-BR-CR * History 169AR-BR-CR * History 172A-B * Afro-American History (Same as BL ST 169AR-BR-CR) * Politics and Public Policy in the United States * American Cultural History | *
@ *
*
*
*
*
*
*
*
* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 20 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) | | * History 117C Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) @ * History 159B-C @ # History 161A-B | * &* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age | | (a) * History 159B-C (b) & History 161A-B (c) & History 167CA-CB-CP (d) & History 167CA-CB-CP (e) & History 168A-B (e) & History 169AR-BR-CR (e) & History 172A-B (e) & History 175A-B (f) American History (Same as CH ST 169AR-BR-CR) (f) Politics and Public Policy in the United States (g) American Cultural History | * &* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the | | @& History 161A-B * History 167CA-CB-CP @& History 168A-B @&* History 169AR-BR-CR @ * History 172A-B History 175A-B Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States American Cultural History | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 182 History 182 History 105A History 117A | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & | | @& History 168A-B @&* History 169AR-BR-CR @ * History 172A-B History 175A-B History 175A-B History 168A-BR (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States | * &*
@ *
*
@ &*
@ *
*
*
*
*
*
*
*
*
*
*
*
* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 2 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117A History 117A History 117A | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as | | ### ### ############################## | * &* * * * * * * * * * * * * * * * * * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117A History 117C History 159B-C History 159B-C History 161A-B | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America | | (a) * History 172A-B (b) * History 172A-B (c) * History 175A-B (d) * History 175A-B (e) * History 175A-B (f) * American Cultural History | * &* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117A History 117C History 159B-C History 161A-B History 161A-B History 167CA-CB-CP | Women, the Family, and Sexuality in the Middle Ages (Same as HIST
117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class | | @ * History 172A-B Politics and Public Policy in the United States @ History 175A-B American Cultural History | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117C History 117C History 159B-C History 161A-B History 161A-B History 167CA-CB-CP History 168A-B | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) | | | * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117C History 117C History 159B-C History 161A-B History 161A-B History 167CA-CB-CP History 168A-B | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST | |) This course applies toward the American History & Institutions requirement. | * &* * * * * * * * * * * * * * * * * * | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117C History 117C History 159B-C History 161A-B History 167CA-CB-CP History 168A-B History 169AR-BR-CR | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST | | | * &* | Feminist Studies 117C Feminist Studies 153 Feminist Studies 159B-C Geography 2 Geography 5 Geography 108 Geography 150 Global Studies 1 Global Studies 2 Global Studies 2 Global Studies 11 History 7 History 11A History 17A-B-C History 17AH-BH-CH History 82 History 105A History 117C History 117C History 159B-C History 161A-B History 167CA-CB-CP History 168A-B History 169AR-BR-CR History 172A-B | Women, the Family, and Sexuality in the Middle Ages (Same as HIST 117C & ME ST 100A) Women and Work (Same as SOC 153) Women in American History (Same as HIST 159B-C) World Regions People, Place and Environment Geography of Surfing Urban Geography Geography of the United States Global History, Culture, and Ideology Global History, Culture, and Ideology Global Socioeconomic and Political Processes Introduction to Law and Society Great Issues in the History of Public Policy History of America's Racial and Ethnic Minorities The American People The American People (Honors) Anthropology of Korea (Same as KOR 82) The Atomic Age Towns, Trade, and Urban Culture in the Middle Ages Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A) Women in American History (Same as FEMST 159B-C) Colonial and Revolutionary America History of American Working Class History of the Chicanos (Same as CH ST 168A-B) Afro-American History (Same as BL ST 169AR-BR-CR) Politics and Public Policy in the United States | Race and Public Policy Analyses of Racism and Social Policy in the &* Black Studies 131 U.S. Black Studies 160 The Urban Dilemma &* Black Studies 129 This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. [^] This course applies toward the European Traditions requirement. | * | History 188S | Representations of Sexuality in Modern Japan | | Art History 109G | Leonardo Da Vinci: Art, Science, and | |-------|--|---|--------|---|--| | | History 189A | Vietnamese History (Same as EACS 189A) | | ,, . | Technology in Early Modern Italy | | * | Italian 161AX | The European Union | | Art History 130E | Art and Empire in the Americas: Aztec, | | | Japanese 25 | Violence and the Japanese State (Same | | | Inca, Spanish | | | _ | as ANTH 25) | | Art History 136I | The City in History | | * | Japanese 63 | Sociology of Japan | 0- | Art History 144D | Russian Art | | * | Japanese 162
Korean 82 | Representations of Sexuality in Modern Japan
Anthropology of Korea (Same as HIST 82) | &
& | Asian American Studies 71
Asian American Studies 138 | Introduction to Asian American Religions Asian American Sexualities | | | Linguistics 20 | Language and Linguistics | | Asian American Studies 158 Asian American Studies 161 | Asian American Sexuanties Asian American Religions (Same as RG ST 123) | | * | Linguistics 70 | Language in Society | œ | Black Studies 3 | Introduction to African Studies | | | Linguistics 130 | Language as Culture | * | Black Studies 5 | Blacks and Western Civilization | | * | Linguistics 132 | Language, Gender, and Sexuality | * | Black Studies 7 | Introduction to Caribbean Studies | | &* | Linguistics 136 | African American Language and Culture | * | Black Studies 49A-B | Survey of African History | | | Linguistics 170 | Language in Social Interaction | &* | Black Studies 50 | Blacks in the Media | | | Linguistics 180 | Language in American Ethnic Minorities | @&* | Black Studies 60A-B | Survey of Afro-American Religious Traditions | | * | Medieval Studies 100A | Women, the Family and Sexuality in the | * | DI 1 0/ 1/ 104 | (Same as RG ST 61A-B) | | @ * | Military Saires 27 | Middle Ages | * | Black Studies 104
Black Studies 130A | Black Marxism | | @ * | Military Science 27 | American Military History and the Evolution
of Western Warfare | | Black Studies 130B | Negritude and African Literature
The Black Francophone Novel | | * | Music 175E | Music Cultures of the World: China | | | Historic Lives | | | Music 175F | Music Cultures of the World: Middle East | | Chinese 158 | Problem of Love | | | Music 175G | Music Cultures of the World: India | * | Chinese 183 | The Quest for Narrative in Late Imperial China | | | Music 175I | Music Cultures of the World: Indonesia | | | (Same as C LIT 183) | | * | Political Science 1 | Introduction to Political Philosophy | * | Chinese 185A-B | Modern China | | | Political Science 12 | American Government and Politics | | | Introduction to Classical Archaeology | | | Political Science 114 | Democracy and Diversity | | Classics 80A | Greek Civilization | | _ | Political Science 115 | Courts, Judges and Politics | | Classics 80B | Roman Civilization | | | Political Science 121
Political Science 136 |
International Politics Government and Politics of China | , | Classics 101 | The Greek Intellectual Experience: From | | | Political Science 145 | The European Union | *^ | Classics 106 | Poetry to Philosophy Magic and Medicine in Ancient Greece | | | Political Science 150A | Politics of the Middle East | | Classics 108 | Pagan Religion and Cult in Ancient Rome | | @ | Political Science 151 | Voting and Elections | | Classics 115 | Marriage in the Ancient World | | | Political Science 155 | Congress | ^ | Classics 150 | The Fall of the Ancient Republic: Cicero, | | | Political Science 171 | Politics and Communication | | | Caesar, and Rome | | @& | Political Science 174 | Chicano/a Politics (Same as CH ST 174) | | Classics 160 | Greek Cities and Sanctuaries | | | Psychology 1 | Introduction to Psychology | *^ | Classics 171 | Artifact and Text: The Archaeology and | | | Psychology 102 | Introduction to Social Psychology | | | Literature of Early Greece | | | Psychology 103 | Introduction to Psychopathology | | Comparative Literature 27 | Memory: Bridging the Humanities and | | | Psychology 105
Psychology 107 | Developmental Psychology
Introduction to Perception | * ^ | Comparativa Literatura 20A B C | Neurosciences (Same as FR 40X & MCDB 27)
Major Works of European Literature | | | Psychology 107 Psychology 108 | Introduction to Perception Introduction to Cognitive Psychology | * | Comparative Literature 35 | The Making of the Modern World | | @ * | Religious Studies 7 | Introduction to American Religion | * | Comparative Literature 113 | Trauma, Memory, Historiography | | | Religious Studies 14 | Introduction to Native American Religious | * | Comparative Literature 119 | Psychoanalytic Theory | | | | Studies | * | Comparative Literature 122A | Representations of the Holocaust (Same as | | * | Religious Studies 15 | Religion and Psychology | | | GER 116A) | | | Religious Studies 35 | Introduction to Religion and Politics | | Comparative Literature 171 | Post Colonial Cultures (Same as FR 154G) | | O 0 # | Religious Studies 40 | Religion and Society | * | Comparative Literature 183 | The Quest for Narrative in Late Imperial China | | @&* | Religious Studies 114B | Religious Traditions of the Southwest | * | Comparative Literature 186RR | (Same as CHIN 183) | | | Religious Studies 115A | Literature and Religion of the Hebrew Bible/
Old Testament | | Comparative Literature 186KK | Romantic Revolutions: Philosophy, History, and the Arts in Europe | | | Religious Studies 131H | Politics and Religion in the City: Jerusalem | * | East Asian Cultural Studies 3 | Introduction to Asian Religious Traditions | | * | Religious Studies 136 | Creation Myths | | Eust i islan Cultural Stadies 5 | (Same as RG ST 3) | | * | Religious Studies 141A-B | Sociology of Religion | * | East Asian Cultural Studies 4A-B | | | * | Religious Studies 147 | Religion and the American Experience | * | East Asian Cultural Studies 5 | Introduction to Buddhism | | @ * | Religious Studies 151A-B | Religion in American History | * | East Asian Cultural Studies 21 | Zen | | @ | Religious Studies 152 | Religion in America Today | * | East Asian Cultural Studies 80 | East Asian Civilization (Same as HIST 80) | | &* | Religious Studies 162F | South Asians in the U.S. | | East Asian Cultural Studies 164B | | | * | Slavic 152A
Slavic 152B | Slavic and East European Folklore
Language and Cultural Identity | * | Environmental Studies 3 | Introduction to the Social and Cultural
Environment | | * | Slavic 152B
Slavic 152C | Ideology and Representation | | Environmental Studies 107C | The Darwinian Revolution and Modern | | | Sociology 1 | Introduction to Sociology | | Environmental Studies 10/C | Biology (Same as HIST 107C) | | | Sociology 131 | Political Sociology | * | Environmental Studies 107E | History of Animal Use in Science (Same as | | * | Sociology 134 | Social Movements | | | HIST 107E) | | @&* | Sociology 144 | The Chicano Community (Same as | * | Feminist Studies 171CN | Citoyennes! Women and Politics in Modern | | | | CH ST 144) | | | France (Same as FR 155D) | | 0.4 | Sociology 152A | Sociology of Human Sexuality | | French 40X | Memory: Bridging the Humanities and | | | Sociology 153 | Women and Work (Same as FEMST 153) | | Franch 50AV DV CV | Neuroscience (Same as C LIT 27 & MCDB 27) | | Ψ. | Spanish 178 | Mexican Culture | , | French 50AX-BX-CX French 70AX | Tales of Love
A Visual History of France | | | Theater 65 | Public Speaking | * | | Reading Paris (1830-1890) | | | | | | French 154F | Time Off in Paris | | ARE | A E: CULTURE AND TH | OUGHT | | French 154G | Post-Colonial Cultures (Same as C LIT 171) | | | | ective on world cultures through the | * | French 155D | Citoyennes! Women and Politics in Modern | | | of human history and the | | | | France (Same as FEMST 171CN) | | olday | 5aman motory and the | ~~ _ | * | German 43A | Dreaming Revolutions: Introduction to | | * | Anthropology 138TS | Archaeology of Egypt | * | German 43C | Marx, Nietzsche and Freud
Germany Today | | | 1 00 | C) C) 1 | | VICHIAN 4.3V | A DALLINGHAY TORIAN | ^{*} This course applies toward the writing requirement. Archaeology of Egypt Ancient Egyptian Religion Art Survey * Anthropology 138TS Anthropology 176TS *^ Art History 6A-B-C Germany Today * German 43C [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. [^] This course applies toward the European Traditions requirement. | * German 116A | Representations of the Holocaust (Same as | * Religious Studies 21 | Zen | |--|--|--|---| | * C 1647 | C LIT 122A) | Religious Studies 25 | Global Catholicism | | * German 164I | Modern Autobiography and Memoir: Texts and Contents | Religious Studies 31 * Religious Studies 43 | Religions of Tibet Origins: A Dialogue Between Scientists and | | * Global Studies 1 | Global History, Culture, and Ideology | S | Humanists (Same as PHYS 43) | | *^ History 2A-B-C | World History | & Religious Studies 71 | Introduction to Asian American Religions | | *^ History 2AH-BH-CH | World History (Honors) | *^ Religious Studies 80A-B-C | Religion and Western Civilization | | *^ History 4A-B-C
*^ History 4AH-BH-CH | Western Civilization | * Religious Studies 116A | The New Testament and Early Christianity | | * History 8 | Western Civilization (Honors) Introduction to History of Latin America | &* Religious Studies 123 | Asian American Religions (Same as
AS AM 161) | | *^ History 33D | The Holocaust: Interdisciplinary Perspectives | * Religious Studies 126 | Roman Catholicism Today | | * History 46 | Survey of Middle Eastern History | * Religious Studies 130 | Judaism | | * History 49A-B | Survey of African History | * Religious Studies 136 | Creation Myths | | * History 80 | East Asian Civilization (Same as EACS 80) | * Religious Studies 138B | Catholic Practices & Global Cultures | | * History 87 | Japanese History through Art and Literature | Religious Studies 150 | American Spiritualities | | * History 106A | The Origins of Western Science, Antiquity to | Religious Studies 162C | Sikhism | | * History 106B | 1500 (Same as ENV S 108A) | * Religious Studies 162E | Indian Civilization | | * History 106B
* History 106C | The Scientific Revolution, 1500 to 1800
History of Modern Science | * Religious Studies 164A
Religious Studies 164B | Buddhist Traditions in South Asia
Buddhist Traditions in East Asia | | History 107B | History of Biological Sciences: Circa 1600 to 1800 | * Religious Studies 183 | Quest for Narrative in Late Imperial China | | History 107C | The Darwinian Revolution and Modern Biology | Slavic 33 | Russian Culture | | | Same as ENV S 107C) | Slavic 130D | Russian Art | | * History 107E | History of Animal Use in Science (Same as | Spanish 153 | Basque Studies | | | ENV S 107E) | Spanish 177 | Spanish-American Thought | | * History 114B-C-D | History of Christianity | | | | History 133A | Nineteenth Century Germany | AREA F AND G - ARTS A | ND LITEDATURE | | History 133B-C | Twentieth Century Germany | AREA F AND G - ARIS A | AND LITERATURE | | ^ History 133D
* History 182A-B | The Holocaust in German History
Korean History and Civilization (Same as | 2 | | | · History 182A-B | KOR 182A-B) | 2 courses minimum | | | * History 185A-B | Modern China | | | | * History 187A-B-C | Modern Japan | Area F: Arts | | | History 188T | Modernity and the Masses of Taisho Japan | | wasiatian of the auto thus wall biotavical | | - | (Same as JAPAN 164) | | preciation of the arts through historical | | * History 189E | History of the Pacific | | rks, and aesthetically creative | | Italian 20X | Introduction to Italian Culture | activity. | | | Italian 138AA-CX-D-DX- | | Art History 1 | Introduction to Art | | EX-FX
* Italian 138AX | Cultural Representations in Italy | * Art History 5A | Introduction to Architecture and the | | * Italian 138AX
* Italian 144AX | Cultural Representations in Italy
Gender and Sexuality in Italian Culture | Ait History 574 | Environment | | ^ Italian 189A | Italy Mediterranean | *^ Art History 6A | Art Survey I: Ancient Art-Medieval Art | | Japanese 164 | Modernity and the Masses of Taisho Japan | *^ Art History 6B | Art Survey II: Renaissance Art-Baroque Art | | | (Same as HIST 188T) | *^ Art History 6C | Art Survey III: Modern-Contemporary Art | | * Korean 182A-B | Korean History and Civilization (Same as | * Art History 6DS | Survey: History of Art in China | | | HIST 182A-B) | * Art History 6DW | Survey: Art of Japan and Korea | | * Latin American & Iberian | Interdisciplinary Approaches to History | Art History 6E |
Survey: Arts in Africa, Oceania, and Native
North America | | Studies 101 | and Societies of Latin America | * Art History 6F | Survey: Architecture and Planning | | * Linguistics 30
Linguistics 50 | The Story of English | * Art History 6G | Survey: History of Photography | | Middle East Studies 45 | Language and Power Introduction to Islamic & Near East Studies | * Art History 6H | Pre-Columbian Art | | Molecular, Cellular & | Memory: Bridging the Humanities and | * Art History 6K | Islamic Art and Architecture | | Developmental Biology 27 | | Art History 101B | Classical Greek Art (480 to 320 BCE) | | * Philosophy 1 | Short Introduction to Philosophy | Art History 103A | Roman Architecture | | Philosophy 3 | Critical Thinking | Art History 103B | Roman Art: From the Republic to Empire | | * Philosophy 4 | Introduction to Ethics | A art TT: 102.C | (509 BC to AD 337) | | *^Philosophy 20A-B-C | History of Philosophy | Art History 103C
Art History 105C | Greek Architecture | | * Philosophy 100A
* Philosophy 100B | Ethics Theory of Knowledge | All History 103C | Medieval Architecture: From Constantine to Charlemagne | | * Philosophy 100B
* Philosophy 100C | Theory of Knowledge
Philosophy of Language | Art History 105E | The Origins of Romanesque Architecture | | * Philosophy 100D | Philosophy of Mind | Art History 105G | Late Romanesque and Gothic Architecture | | * Philosophy 100E | Metaphysics | Art History 105L | Art and Society in Late Medieval Tuscany | | * Philosophy 112 | Philosophy of Religion | Art History 107A | Painting in Fifteenth-Century Netherlands | | * Physics 43 | Origins: A Dialogue Between Scientists and | Art History 107B | Painting in Sixteenth-Century Netherlands | | | Humanists (Same as RG ST 43) | Art History 109A | Italian Renaissance Art 1400-1500 | | Political Science 187 | Classical Political Theory | Art History 109B | Italian Renaissance Art 1500-1600 | | Political Science 188 | Modern Political Theory | Art History 109C | Art as Technique, Labor, and Idea in | | * Portuguese 125A | Recent and Contemporary Political Theory | Art History 109D | Renaissance Italy Art and the Formation of Social Subjects | | * Portuguese 125A
* Portuguese 125B | Culture and Civilization of Portugal
Culture and Civilization of Brazil | The Thotoly 107D | in Early Modern Italy | | * Religious Studies 1 | Introduction to the Study of Religion | Art History 109E | Michelangelo | | * Religious Studies 3 | Introduction to Asian Religious Traditions | Art History 109F | Italian Journeys | | <u> </u> | (Same as EACS 3) | Art History 109G | Leonardo Da Vinci: Art, Science and | | Religious Studies 4 | Introduction to Buddhism | | Technology in Early Modern Italy | | Religious Studies 5 | Introduction to Judaism, Christianity, and Islam | Art History 109H | Art and Moral Values | | Religious Studies 6 | Islam and Modernity | Art History 111B | Dutch Art in the Age of Rembrandt Dutch Art in the Age of Vermeer | | Religious Studies 12 | Religious Approaches to Death | Art History 111C
Art History 111E | Gender and Power in Sixteenth- and | | * Religious Studies 19
Religious Studies 20 | The Gods and Goddesses of India Indic Civilization | Aut missory Title | Seventeenth-Century European Art | | Religious Studies 20 | maic Civinzation | Art History 111F | Rethinking Rembrandt | ^{*} This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. $^{\wedge}$ This course applies toward the European Traditions requirement. | | Art History 113A | Seventeenth-Century Art in Southern | | Art History 144D | Russian Art | |----------|--------------------|---|----|----------------------------------|---| | | | Europe | | Art History 184B | The History of Rome: Image and Ideology | | | Art History 113B | Seventeenth-Century Art in Italy | | Art History 184C | The Palace and Villa in Early Modern Europe | | | Art History 113D | Architecture in Early Modern Italy | * | Art Studio 1A | Visual Literacy | | | Art History 113F | Bernini and the Age of the Baroque | | Art Studio 7A | The Intersections of Art and Life | | | Art History 115B | Eighteenth-Century Art 1750-1810 | | Art Studio 125 | Art Since 1950 | | | Art History 115C | Eighteenth-Century British Art and Culture | &* | Asian American Studies 4 | Introduction to Asian American Popular | | | Art History 115D | Eighteenth-Century Art in Italy: The Age | | | Culture | | | , | of the Grand Tour | & | Asian American Studies 118 | Asian Americans in Popular Culture | | | Art History 117A | Nineteenth-Century Art 1800-1848 | & | Asian American Studies 120 | Asian American Documentary | | | Art History 117B | Nineteenth-Century Art 1848-1900 | & | Asian American Studies 127 | Asian American Film, Television, and | | | Art History 117C | Nineteenth-Century British Art and Culture | α. | 7151dii 71iiiciicdii 5tddies 127 | Digital Media | | | Art History 117D | Nineteenth-Century French Art 1800 to 1900 | & | Asian American Studies 140 | Theory & Production of Social Experience | | | Art History 117F | Impressionism and Post-Impressionism | & | Asian American Studies 146 | Racialized Sexuality on Screen and Scene | | | Art History 119A | Art in the Modern World | & | Asian American Studies 170KK | Special Topics in Asian American Studies | | | Art History 119B | | | Black Studies 14 | History of Jazz | | | 2 | Contemporary Art | | | , | | | Art History 119C | Expressionism to New Objectivity, Early | | Black Studies 45 | Black Arts Expressions | | | 1.11 | Twentieth-Century German Art | & | Black Studies 142 | Music in Afro-American Culture: U.S.A. | | | Art History 119D | Art in the Post-Modern World | • | Black Studies 153 | Black Popular Music in America | | | Art History 119E | Early Twentieth -Century European Art | | Black Studies 161 | Third-World Cinema | | | | 1900-1945 | | Black Studies 162 | African Cinema | | | Art History 119F | Art of the Postwar Period 1945-1968 | | Black Studies 170 | Afro-Americans in the American Cinema | | | Art History 119G | Critical Approaches to Visual Culture | * | Black Studies 171 | Africa in Film | | <u>@</u> | Art History 121A | American Art from the Revolution to Civil | &* | Black Studies 172 | Contemporary Black Cinema | | | | War: 1700-1860 | | Chicano Studies 119 | Mesoamerican Art and Artists | | (a) | Art History 121B | Reconstruction, Renaissance, and Realism | & | Chicano Studies 125B | Contemporary Chicano and Chicana Art | | _ | | in American Art 1860-1900 | & | Chicano Studies 138 | Barrio Popular Culture | | (a) | Art History 121C | Twentieth-Century American Art: | & | Chicano Studies 148 | Chicana Art and Feminism | | | , | Modernism and Pluralism 1900-Present | @& | Chicano Studies 188C | Chicano Theater Workshop | | & | Art History 121D | African-American Art and the African Legacy | | Chinese 40 | Popular Culture in Modern Chinese Societies | | | Art History 121E | American Things: Material Culture and | | Chinese 141 | China in Transition Through Films | | | The History 121E | Popular Art | * | Chinese 170 | New Taiwan Cinema | | & | Art History 121F | History of Native Art and Architecture in | | Classics 102 | Greek Tragedy in Translation | | œ | Alt History 1211 | North America | | Classics 165 | Greek Painting | | | A II: 122 A | | | | | | 0 | Art History 123A | Modern Latin American Art | , | Classics 170 | Pompeii | | & | Art History 125A | Chicano Art: Symbol and Meaning | | Dance 35 | History and Appreciation of World Dance | | | Art History 127A-B | African Art | * | Dance 36 | History of Modern Dance | | * | Art History 130A | Pre-Columbian Art of Mexico | | Dance 45 | History and Appreciation of Dance | | * | Art History 130B | Pre-Columbian Art of the Maya | | Dance 145A-B-M | Studies in Dance History | | | Art History 130C | The Arts of Spain and New Spain | * | Dance 145W | Women in Dance | | * | Art History 130D | Pre-Columbian Art of South America | | Dance 146 | Multicultural Dance | | | Art History 132A | Mediterranean Cities | * | Film Studies 46 | Introduction to Cinema | | | Art History 132B | The "Masterpiece" in Islamic Art and | * | Film Studies 120 | Japanese Cinema (Same as JAPAN 159) | | | | Architecture | | Film Studies 121 | Chinese Cinema | | | Art History 132C | Architecture and Ideology from Constantine | * | Film Studies 122AA-ZZ | Topics in National Cinema | | | - | to Suleyman the Magnificent | * | Film Studies 124 | Indian Cinema | | | Art History 132D | Islamic Architecture 650-1400 | * | Film Studies 125B | Documentary Film | | | Art History 132E | Islamic Architecture 1400-Modern | * | Film Studies 126 | Cuban Cinema | | | Art History 132I | Art of Empire | &* | Film Studies 127 | Latin American Cinema | | | Art History 134A | Buddhist Art | * | Film Studies 127M | Mexican Film and Cinema | | | Art History 134B | Early Chinese Art | * | Film Studies 134 | French and Francophone Cinema | | | Art History 134C | Chinese Painting | | Film Studies 136 | British Cinema | | | Art History 134D | Art and Modern China | | Film Studies 144 | The Horror Film (Same as GER 183) | | | | The Art of the Chinese Landscape | | Film Studies 163 | Women and Film: Feminist Perspectives | | | Art History 134E | 1 | | | • | | | Art History 134F | The Art of Japan | | Film Studies 169 | Film Noir | | | Art History 134G | Japanese Painting | * | Film Studies 175 | Experimental Film | | | Art History 134H | Ukiyo-e: Pictures of the Floating World | · | Film Studies 178Z | Technology and Cinema (Same as FR 156D) | | | Art History 136A | Nineteenth-Century Architecture | • | French 156A | French Cinema: History and Theory | | | Art History 136B | Twentieth-Century Architecture | | French 156B | French and
Francophone Cinema | | | Art History 136E | Modern Design | * | French 156C | Modern Images of the Middle Ages: The | | <u>@</u> | Art History 136H | Housing American Cultures | | | Intersection of Text, History, and Film | | | Art History 136I | The City in History | | French 156D | Technology and Cinema (Same as FLMST 178Z) | | | Art History 136J | Landscape of Colonialism | * | General Education 1FW | General Education Seminar for Freshmen | | | Art History 136M | Revival Styles in Southern California | * | German 55A-B | Contemporary German Pop Culture | | | | Architecture | * | German 183 | The Horror Film (Same as FLMST 144) | | | Art History 136O | Sustainable Architecture: History and | | Italian 124X | Italian Theatre | | | | Aesthetics | | Italian 178B | Italian Cinema | | | Art History 136Y | Modern Architecture in Souther California | | Italian 179X | Fiction and Film in Italy | | | Art History 138B | Contemporary Photography | * | Italian 180Z | Italian Cinema | | | Art History 138C | Social Documentary Photography | | Japanese 149 | Traditional Japanese Drama | | | Art History 138D | History of Photography | * | Japanese 159 | Japanese Cinema (Same as FLMST 120) | | | Art History 140A | Portraiture | | Music 11 | Fundamentals of Music | | | Art History 140E | Landscape Design History | * | Music 15 | Music Appreciation | | | Art History 141D | Birth of the Modern Museum | | Music 17 | World Music | | | Art History 143C | Gender and Representation | * | Music 17
Music 114 | | | | Art History 144A | The Avant-Garde in Russia | * | Music 114
Music 115 | Music and Popular Culture in America | | | - | | * | | Symphonic Music A merican Music History: Colonial to Present | | | Art History 144C | Contemporary Art in Russia and Eastern | | Music 116 | American Music History: Colonial to Present | | | | Europe (Same as SLAV 130C) | | | | ^{*} This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. [^] This course applies toward the European Traditions requirement. | * Music 118A | History and Literature of Great Composers in
Western Music | |-----------------------------------|--| | * Music 119A | Music and Politics | | Music 119B | Music in Political Films | | * Philosophy 136 | Aesthetics | | Slavic 130A | The Avantgarde in Russia | | Slavic 130B | Russian Cinema | | Slavic 130C | Contemporary Art in Russia and Eastern Europe (Same as ARTHI 144C) | | Slavic 130D | Russian Art | | Slavic 130E | Masters of Soviet Cinema | | Spanish 126 | Spanish Cinema | | Theater 2A-B | Performance in Global Contexts | | *^ Theater 2C | Performance in Global Contexts: Europe | | * Theater 3 | Life of the Theater | | Theater 5 | Introduction to Acting | | * Theater 7 | Performance of the Human Body | | *^ Theater 8 | European Theater History | | * Theater 9 | Playwriting | | @ * Theater 180A-B | American Drama | | * Theater 180C | Contemporary American Drama and Theater | | &* Theater 180E | Culture Clash: Studies in U.S. Latino Theater | | &* Theater 180G | Race, Gender, and Performance | | Theater 181S | National Studies in Spanish Theater and Drama | | * Theater 182A | Ancient Theater and Drama | | * Theater 182M | Modern Theater and Drama | | * Theater 182MC | Modern Contemporary | | * Theater 182N | Neoclassical Theater and Drama | | Theater 182RM | Romantic Theater and Drama | | &* Theater 184AA | African American Performance | | * Theater 184CA | Contemporary African Theater and Performance | | * Theater 188S | Shakespeare on Film and Stage | ### AREA G: LITERATURE Objective: To develop an appreciation of literature through historical study, analysis of master works, and aesthetically creative activity. | tudy | , analysis of master works | , and aesthetically creative activity. | |------|--------------------------------|--| | & | Asian American Studies 5 | Introduction to Asian American Literature | | * | Asian American Studies 122 | Asian American Fiction | | * | Asian American Studies 128 | Writings by Asian American Women | | * | Black Studies 33 | Major Works of African Literatures (Same as C LIT 33) | | &* | Black Studies 38A-B | Introduction to Afro-American Literature | | * | Black Studies 126 | Comparative Black Literatures | | | Black Studies 127 | Black Women Writers | | * | Black Studies 130A | Negritude and African Literature | | | Black Studies 130B | The Black Francophone Novel | | | Chicano Studies 152 | Postcolonialism | | &* | Chicano Studies 180 | Survey of Chicano Literature | | &* | Chicano Studies 181 | The Chicano Novel | | &* | Chicano Studies 184A | Chicana Writers | | | Chinese 110A | Classics of Ancient China | | * | Chinese 112A | Major Movements in Modern Chinese Literature | | | Chinese 115A | Imagism, Haiku, and Chinese Poetry | | * | Chinese 124A-B | Readings in Modern Chinese Literature | | | Chinese 132A | Classical Chinese Poetry | | * | Chinese 139 | Boundaries of the Self in Late Imperial Chinese | | | | Literature | | | Chinese 142 | Tang Poetry | | | Chinese 148 | Historic Lives | | ^ | Classics 36 | Ancient Epic | | | Classics 37 | Greek Literature in Translation | | | Classics 38 | Latin Literature in Translation | | *^ | Classics 39 | Women in Classical Literature | | | Classics 40 | Greek Mythology | | | Classics 102 | Greek Tragedy in Translation | | *^ | Classics 109 | Viewing the Barbarian: Representations of
Foreign Peoples in Greek Literature | | *^ | Classics 110 | From Homer to Harlequin: Masculine,
Feminine, and the Romance | | ^ | Classics 120 | Greek and Latin Lyric Poetry | | ^ | Classics 130 | Comedy and Satire in Translation | | *^ | Classics 175 | Ancient Theories of Literature | | *^ | Comparative Literature 30A-B-C | Major Works of European Literature | | * | Comparative Literature 31 | Major Works of Asian Literatures | | * | Comparative Literature 32 | Major Works of Middle Eastern Literatures | | | | | | * | Comparative Literature 33 | Major Works of African Literatures (Same as BL ST 33) | | | |-------------|---|--|--|--| | * | Comparative Literature 34 | Literature of the Americas | | | | | Comparative Literature 100 | Introduction to Comparative Literatures | | | | * | | Voyages to the Unknown | | | | * | | Trauma, Memory, Historiography | | | | | Comparative Literature 117A-B | European Romanticism | | | | * | Comparative Literature 122A | Representations of the Holocaust (Same as GER 116A) | | | | * | Comparative Literature 122B | Holocaust in France (Same as FR 154E) | | | | * | Comparative Literature 126 | Comparative Black Literatures | | | | * | | Children's Literature | | | | * | Comparative Enterature 120B | Representing Childhood | | | | * | Comparative Enterature 133 | Transpacific Literature | | | | *
0_ * | Comparative Entertaine 110 | Robots | | | | &*
* | | Border Narratives | | | | * | Comparative Enterature 15 i | Science Fiction in Eastern Europe | | | | | Comparative Literature 161
Comparative Literature 171 | Literature of Central Europe
Post-Colonial Cultures (Same as FR 154G) | | | | * | | Mysticism | | | | * | Comparative Literature 179C | Mediatechnology (Same as GER 179C) | | | | | Comparative Literature 186EE | Interdisciplinary Comparative Literature | | | | * | Comparative Literature 187 | Strauss and Hofmannsthal | | | | | Comparative Literature 188 | Narrative Studies | | | | | Comparative Literature 191 | Fantasy and the Fantastic (Same as FR 153D) | | | | * | English 15 | Introduction to Shakespeare | | | | * | | Introduction to Narrative | | | | * | English 25 | Introduction to Literature and the Culture of Information | | | | * | English 35 | Introduction to Literature and the | | | | | ž. | Environment | | | | &* | English 38A-B | Introduction to African American Literature | | | | &* | Č | Introduction to U.S. Minority Literature | | | | * | English out it is | Topics in Literature | | | | * | English 101 | English Literature from the Medieval Period to 1650 | | | | * | English 102 | English and American Literature from 1650 to 1789 | | | | * | English 103A | American Literature from 1789 to 1900 | | | | * | English 103B | British Literature from 1789 to 1900 | | | | * | English 104A | American Literature from 1900 to Present | | | | * | Eligibii 101B | British Literature from 1900 to Present | | | | * | English 105A | Shakespeare: Poems and Earlier Plays | | | | * | English 105B | Shakespeare: Later Plays | | | | * | English 113AA-ZZ | Literary Theory and Criticism | | | | * | English 114AA-ZZ | Women and Literature | | | | &*
&* | Č | Black Women Authors
Native American Women Authors | | | | * | English 114NW
English 115 | Medieval Literature | | | | * | | Biblical Literature: The Old Testament | | | | * | 2.1.6.1.0.1 | Biblical Literature: The New Testament | | | | * | English 110B | Studies in Medieval Literature | | | | * | English 119X | Medieval Literature in Translation | | | | * | E 1: 1 100 | Modern Drama | | | | * | | The Art of Narrative | | | | * | | Cultural Representations | | | | &* | English 122BP | Cultural Representations | | | | * | English 122NE | Cultural Representations of Nature and the | | | | * | English 124 | Environment (Same as ENV S 122NE)
Readings in the Modern Short Story | | | | * | 2.1.6.1.2.1 | Survey of British Fiction | | | | * | English 120D C | Literary Genres | | | | * | | Studies in American Literature | | | | @ * | | Studies in American Regional Literature | | | | <u>@</u> &* | English 134AA-ZZ | Literature of Cultural and Ethnic | | | | @ * | English 137A-B | Communities in the United
States
Poetry in America | | | | @ *
@ * | English 138C | Prose Narrative in America Since 1917 | | | | * | | Contemporary American Literature | | | | * | English 110 | Anglo-Irish Literature | | | | * | English 152A | Chaucer: Canterbury Tales | | | | * | | Literature of Chivalry | | | | * | English 157 | English Renaissance Drama | | | | * | English 162 | Milton | | | | * | English 165AA-ZZ | Topics in Literature | | | | * | English 170 Ciri, iiri, Erri, iiri | Studies in Literature and the Mind | | | | * | 211811011 172 | Studies in the Enlightenment | | | | * | English 179 | British Romantic Writers | | | | | | | | | |) This c | This course applies toward the American History & Institutions requirement. | | | | This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. ^ This course applies toward the European Traditions requirement. | * | English 180 | The Victorian Era | ^ Latin 100 | Introduction To Latin Prose | |---|--|--|---|--| | * | English 181, 181MT | Studies in the Nineteenth Century | ^ Latin 101 | Introduction To Latin Poetry | | * | English 184 | Modern European Literature | * Latin American & Iberian | Interdisciplinary Approaches to the | | * | English 185 | Modernism in English | Studies 102 | Cultures, Languages and Literature | | * | English 187AA-ZZ | Studies in Modern Literature | Medieval Studies 100B | Literature of Chivalry | | * | English 189 | Contemporary Literature | * Music 187 | Strauss and Hofmannsthal | | * | English 190AA-ZZ | World Literature in English | Portuguese 105A-B-C | Survey of Portuguese Literature | | @&* | English 191 | Afro-American Fiction and Criticism, | Portuguese 106A-B-C | Survey of Brazilian Literature | | | | 1920s to Present | Portuguese 115AA-ED-EO | Brazilian Literature | | * | English 192 | Science Fiction | Portuguese 120AA-ZZ | Portuguese Literature in English Translation | | * | English 193 | Detective Fiction | Religious Studies 114X | Dante's "Divine Comedy" | | * | Environmental Studies 122LE | Cultural Representations: Literature and the | Religious Studies 129 | Religions of the Ancient Near East | | | | Environment | * Religious Studies 189C | Modern Arabic Literature in Translation | | * | Environmental Studies 122NE | Cultural Representations of Nature and | Slavic 117F | Chekhov | | | | the Environment (Same as ENGL 122NE) | * Slavic 117G | Dostoevsky | | * | Environmental Studies 160 | American Environmental Literature | * Slavic 117H | Tolstoy | | • | Feminist Studies 40 or 40H | Women, Representation, and Cultural | Slavic 123A-B | Nineteenth Century Russian Literature | | * | Feminist Studies 171CN | Production Citavannal Waman and Politics in Madam | Slavic 123C-D * Slavic 151C | Twentieth Century Russian Literature
Literature of Central Europe | | · | reminist studies 1/1CN | Citoyennes! Women and Politics in Modern
France (Same as FR 155D) | * Slavic 151C | Death and Its Representations | | | French 101A-B-C | Literary and Cultural Analysis | * Slavic 164B | Science Fiction in Eastern Europe | | * | French 147A | French and Francophone Poetry | * Slavic 164C | Women in Russian Literature | | * | French 147B | French and Francophone Toetry French and Francophone Theater | Spanish 30 | Introduction to Hispanic Literature | | * | French 148C | Women in the Middle Ages | Spanish 102L | Introduction to Hispanic Literary Studies | | * | French 148E | The Age of Louis XIV | * Spanish 115B | Masterpieces of Spanish Literature | | | French 149B | The Politics of Paradise | * Spanish 120A-B | Contemporary Spanish American Fiction in | | * | French 149C | Reading Paris (1830-1890) | Spanish 120/1 B | English Translation | | * | French 149D | Post-War Avant-Gardes | Spanish 131 | Spanish Golden Age Poetry | | * | French 149E | Belgian Literature and Art | &* Spanish 135 | Survey of Chicano Literature | | * | French 153A | Medieval Literature in Translation | Spanish 137A-B | Golden Age Drama | | * | French 153B | French Theater in Translation | Spanish 138 | Contemporary Mexican Literature | | * | French 153C | Autobiography | Spanish 140A-B | Cervantes: Don Quijote | | | French 153D | Fantasy & the Fantastic (Same as C LIT 191) | * Spanish 142A-B | Don Quixote in English Translation | | * | French 153E | The Power of Negative Thinking: Sartre, | Spanish 174 | The Hispanic Novel and Cinema | | | | Adorno, and Marcuse | &* Spanish 179 | Chicano Novel | | * | French 153F | Existentialist Literature in Translation | | | | * | French 154A | Voyages to the Unknown | | | | * | French 154D | Torture | Area H. Foreign Langu | 1200 | | | | | Area H: Foreign Lang | uaye | | * | French 154E | Holocaust in France (Same as C LIT 122B) | Alea II. I Oleigii Laiigi | uaye | | * | French 154E
French 154F | Holocaust in France (Same as C LIT 122B)
Time Off in Paris | | • | | * | French 154E
French 154F
French 154G | Holocaust in France (Same as C LIT 122B)
Time Off in Paris
Post-Colonial Cultures (Same as C LIT 171) | | in familiarity with a foreign language. | | * | French 154E
French 154F
French 154G
French 155A | Holocaust in France (Same as C LIT
122B)
Time Off in Paris
Post-Colonial Cultures (Same as C LIT 171)
Women in the Middle Ages | | • | | * * | French 154E
French 154F
French 154G
French 155A
French 155B | Holocaust in France (Same as C LIT 122B)
Time Off in Paris
Post-Colonial Cultures (Same as C LIT 171)
Women in the Middle Ages
Women on Trial | Objective: To help students ga | in familiarity with a foreign language. | | | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6 | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese | | | French 154E
French 154F
French 154G
French 155A
French 155B | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage | | | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH
French 2-3 | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French | | * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH
French 2-3
French 4-5-6 | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French | | * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH
French 2-3
French 4-5-6
French 6GS | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. | | * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German | | * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D
French 156C
German 43B
German 115A-B-C | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German | | * * * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D
French 156C
German 43B
German 115A-B-C | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B | in familiarity with a foreign language. Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish | | * * * | French 154E
French 154F
French 154G
French 155A
French 155B
French 155C
French 155D
French 156C
German 43B
German 115A-B-C
German 116A | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH
French 2-3
French 4-5-6
French 6GS
German 2-3
German 4-5-6
German 95B
German 95C | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish | | * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 138 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction | Objective: To help students ga
Chinese 2-3
Chinese 2NH-3NH
Chinese 4-5-6
Chinese 4NH-5NH-6NH
French 2-3
French 4-5-6
French 6GS
German 2-3
German 4-5-6
German 95B
German 95C
Global Studies 60B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) | | * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 138 German 143 German 151C German 164E-F-G | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language | Chinese 2-3 Chinese 2-H-3NH Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek | | * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 138 German 143 German 151C German 164E-F-G German 164I | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and
Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek | | * * * * * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 138 German 143 German 151C German 164E-F-G German 164I German 164I German 166 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek | | * * * * * * * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 156C German 143 German 151C German 164E-F-G German 164I German 1666 German 179B | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek | | * * * * * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 138 German 143 German 151C German 164E-F-G German 164 German 166 German 179B German 179C | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew | | * * * * * * * * * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164E-F-G German 164 German 166 German 179B German 179C German 182 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew | | * * * * * * * * * * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 179C German 179C German 182 German 182 German 184 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 179 German 164I German 166 German 179B German 179C German 182 German 187 Global Studies 101 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 164 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 |
Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese | | * | French 154E French 154F French 154G French 155A French 155B French 155D French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164E-F-G German 166 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 100 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 4-5-6 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese | | * | French 154E French 154F French 154G French 155A French 155B French 155D French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 166 German 179B German 179C German 182 German 182 German 187 Global Studies 101 Greek 100 Greek 100 Greek 101 Hebrew 114A-B-C | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Pose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 170C German 164I German 166 German 179B German 179C German 182 German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Jeatin Intermediate Latin Elementary Portuguese Intermediate Portuguese | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 179C German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Posetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 179B German 164E-F-G German 166 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 102 Italian 111 | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in
Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Posety Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 11B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Hindi (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 155C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 166 German 179B German 179C German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 101 Italian 102 Italian 111 Italian 114X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Dortuguese Intermediate Portuguese Intermediate Portuguese Intermediate Portuguese Interdi (II-III-IV-V-VI) Hindi (II-III-IV-V-VI) Biblical Hebrew (II-III) | | * | French 154E French 154F French 154G French 155A French 155B French 155D French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 126AA-ZZ | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C Religious Studies 17B-C Religious Studies 30B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 178C German 164 German 179C German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 1126AA-ZZ Italian 138AX | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Pose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C Religious Studies 30B-C-D-E-F Religious Studies 30B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) Pashto (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 164 German 164 German 169 German 179 German 179 German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 126AA-ZZ Italian 138AX Italian 138AX Italian 142X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew
Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy Women in Italy | Chinese 2-3 Chinese 2-3 Chinese 2NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 4-5-6 Religious Studies 11B-C-D-E-F Religious Studies 17B-C Religious Studies 45B-C-D-E-F Religious Studies 45B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) Pashto (II-III-IV-V-VI) Pashto (II-III-IV-V-VI) Persian (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 166 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 126AA-ZZ Italian 138AX Italian 142X Italian 144X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy Women in Italy Gender and Sexuality in Italian Culture | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 Religious Studies 11B-C-D-E-F Religious Studies 17B-C Religious Studies 30B-C-D-E-F Religious Studies 57B-C-D-E-F 60B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Portuguese Intermediate Portuguese Intermediate Holian Intermediate Holian Intermediate Holian Intermediate Italin Intermediate Italin Intermediate Holian Italin Intermediate Holian Intermediate Italin Intermediate Holian Intermediate Italin Int | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 164 German 164 German 164 German 169 German 179 German 179 German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 126AA-ZZ Italian 138AX Italian 138AX Italian 142X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy Women in Italy Gender and Sexuality in Italian Culture Early Modern Epic | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C Religious Studies 30B-C-D-E-F Religious Studies 57B-C-D-E-F Religious Studies 57B-C-D-E-F Religious Studies 65B-C-D-E-F Religious Studies 65B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Hindi (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) Pashto (II-III-IV-V-VI) Persian (II-III-IV-V-VI) Persian (II-III-IV-V-VI) Punjabi (II-III-IV-V-VI) Turkish (II-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155C French 155D French 155C French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 166 German 164 German 169 German 182 German 187 Global Studies 101 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 138AX Italian 138AX Italian 142X Italian 142X Italian 144X Italian 163X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy Women in Italy Gender and Sexuality in Italian Culture | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C Religious Studies 17B-C Religious Studies 57B-C-D-E-F Religious Studies 57B-C-D-E-F Religious Studies 60B-C-D-E-F 122B-C | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Latin Elementary Portuguese Intermediate Portuguese Intermediate Hortuguese Arabic (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) Pashto (II-III-IIV-V-VI) Persian (II-III-IIV-V-VI) Punjabi (II-III-IV-V-VI) Turkish (II-III-IV-V-VI) Turkish (II-III-IIV-V-VI) Syriac (II-III-III-IV-V-VI) | | * | French 154E French 154F French 154G French 155A French 155B French 155D French 155D French 156C German 43B German 115A-B-C German 116A German 164 German 164 German 179B German 179C German 182 German 187 Global Studies 101 Greek 100 Greek 100 Greek 101 Hebrew 114A-B-C Italian 101 Italian 102 Italian 111 Italian 114X Italian 126AA-ZZ Italian 138AX
Italian 144AX Italian 143X Italian 144AX Italian 143X 179X | Holocaust in France (Same as C LIT 122B) Time Off in Paris Post-Colonial Cultures (Same as C LIT 171) Women in the Middle Ages Women on Trial French and Fracophone Women Writers Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN) Modern Images of the Middle Ages German Childhood and Youth Survey of German Literature Representations of the Holocaust (Same as C LIT 122A) Psy Fi: German Science Fiction The Superhuman Literature of Central Europe German Writers in German Language Modern Autobiography and Memoir Grimm Mysticism Mediatechnology (Same as C LIT 179C) Vampirism in German Literature and Beyond Satan in German Literature and Beyond Global Literatures Introduction To Greek Prose Introduction To Greek Pose Introduction To Greek Poetry Readings in Modern Hebrew Prose and Poetry Modern Italy Medieval and Renaissance Italy Italian Short Fiction Dante's "Divine Comedy" Literature in Italian Cultural Representations in Italy Women in Italy Gender and Sexuality in Italian Culture Early Modern Epic Fiction and Film in Italy | Chinese 2-3 Chinese 2-NH-3NH Chinese 4-5-6 Chinese 4NH-5NH-6NH French 2-3 French 4-5-6 French 6GS German 2-3 German 4-5-6 German 95B German 95C Global Studies 60B-C-D-E-F Greek 2 Greek 3 Greek 12-13 Hebrew 2-3 Hebrew 4-5-6 Italian 2-3 Italian 4-5-6 Japanese 2-3 Japanese 2-3 Japanese 4-5-6 Latin 2 Latin 3 Portuguese 2-3 Portuguese 4-5-6 Religious Studies 10B-C-D-E-F Religious Studies 17B-C Religious Studies 30B-C-D-E-F Religious Studies 57B-C-D-E-F Religious Studies 57B-C-D-E-F Religious Studies 65B-C-D-E-F Religious Studies 65B-C-D-E-F | Elementary Modern Chinese First Year Chinese Heritage Intermediate Modern Chinese Second Year Chinese Heritage Elementary French Intermediate French Intermediate French: Global Studies- Political Sci. Elementary German Intermediate German Intermediate Yiddish Advanced Yiddish Punjabi (II-III-IV-V-VI) Elementary Greek Intermediate Greek Modern Greek Elementary Hebrew Intermediate Modern Hebrew Elementary Italian Intermediate Italian First Year Japanese Second Year Japanese Elementary Latin Intermediate Portuguese Intermediate Portuguese Arabic (II-III-IV-V-VI) Hindi (II-III-IV-V-VI) Biblical Hebrew (II-III) Tibetan (II-III-IV-V-VI) Pashto (II-III-IV-V-VI) Persian (II-III-IV-V-VI) Persian (II-III-IV-V-VI) Punjabi (II-III-IV-V-VI) Turkish (II-III-IV-V-VI) | This course applies toward the writing requirement. Korean 113 Korean Literature Survey [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. [^] This course applies toward the European Traditions requirement. Slavic 2-3 Elementary Russian Slavic 4-5-6 Intermediate Russian Spanish 2-3 Elementary Spanish Spanish 2SS-3SS Intensive Elementary Spanish Spanish 4-5-6 Intermediate Spanish Spanish 4SS-5SS-6SS Intensive Intermediate Spanish ### **Special Subject Area Supplementary List of Courses** Note: These courses do not fulfill requirements for Areas D, E, F, G or H, and may not be used to fulfill the depth requirement; they satisfy the university and special subject area requirements listed only. Myth, Ritual, and Symbol Anthropology 116A Anthropology 116B Anthropological Approaches to Religion Anthropology 142B Contemporary Issues in South Asia Introduction to Contemporary Social Theory Anthropology 143 Anthropology 148A Comparative Ethnicity & Anthropology 172 Colonialism and Culture Art History 186AA-ZZ Seminar in Advanced Studies in Art History Asian American Studies 100CC Filipino Americans Asian American Studies 113 The Asian American Movement Asian American Studies 121 Asian American Autobiographies and Biographies Asian American Studies 124 Asian American Literature in Comparative & Frameworks Asian American Men and Contemporary Asian American Studies 134 Men's Issues & Asian American Studies 148 Introduction to Video Production Asian American Studies 149 Screenwriting @&* Black Studies 137E Sociology of the Black Experience Chicano Studies 139 Chicana/o Native American Heritage & Chicano Studies 154F The Chicano Family &; History of the Chicano Movement & Chicano Studies 168E Chicano Studies 168F Racism in American History Chicano Studies 171 The Brown/Black Metropolis: Race, Class, & Resistance in the City Chicano Studies 188A-B Chicano Theater (a) Immigration and the US Border & Chicano Studies 189 Chinese 132B Special Topics in Modern Chinese Poetry Chinese 150 The Language of Vernacular Chinese Literature Religion in Chinese Culture Chinese 166A Chinese 166B Taoist Traditions in China Chinese 166C Confucian Tradition: The Classical Period Chinese 166E The Flowering of Chinese Buddhism Communication 130 Political Communication Communication 137 Global Communication, International Relations and the Media Communication 150 Group Communication in Multiple Contexts Communication 153 Communication and Global Advocacy Global Humanities: The Politics and Poetics Comparative Literature 36 of Witnessing Comparative Literature 124 Old Comedy/New Comedy Comparative Literature 170 Literary Translation: Theory and Practice Counseling, Clinical & School Introduction to Applied Psychology Psychology 101 Earth Science 6 Mountains, Boots and Backpacks: Field Study of the High Sierra Earth Science 10 Antarctica: The Last Place on Earth Earth Science 104A Field Studies in Geological Methods Earth Science 104B Field Methods Earth Surface Processes and Landforms Earth Science 117 Earth Science 123 The Solar System Earth Science 130 Global Warming - Science and Society East Asian Cultural Studies 178 The Body Religious in Chinese Culture Economic History of the United States Economics 113A-B Economics 117A Law and Economics Economics 119 United States Business History Introduction to the University Experience Education 20 Ecology, Evolution, and Biochemical Ecology Marine Biology 124 **EEMB 127** Plant Biology and Biodiversity **EEMB 134** Biology of Seaweeds and Phytoplankton EEMB 142BL Chemical and Physical Methods of Aquatic Environments EEMB 142CL Methods of Aquatic Biology **EEMB 147** Biology of Coral Reefs **EEMB 149** Mariculture for the Twenty-first Century **EEMB 179** Modeling Environmental and Ecological Change Global Humanities English 36 Engineering 101 Ethics in Engineering Advanced Engineering Writing Engineering 103 Environmental Studies 2 Introduction to Environmental Science **Environmental Studies 20** Shoreline Issues Environmental Studies 110 Disease and the Environment Environmental Studies 143 Endangered Species Management Environmental Studies 146 Animals in Human Society: Ethical Issues Environmental Journalism: A Survey Environmental Studies 161 Environmental Studies 173 American Environmental History Environmental Studies 189 Religion and Ecology in the Americas Feminist Studies 80 or 80H Introduction to LGBTQ Studies Feminist Studies 142 Black Women Filmmakers Feminist Studies 150, 150H Sex, Love, and Romance Feminist Studies 154A Sociology of the Family Women in American Society Feminist Studies 155A Feminist Studies 162 Critical LGBTQ Studies Film Studies 101A-B-C History of Cinema Film Studies 146 Advanced Film Analysis Film Studies 191 Film Criticism Living with Global Warming Geography 8 Geography 148 California Geography of the Information Society Geography 180 History 6 Historical Reasoning History 56 Introduction to Mexican History History 123A Europe in the Nineteenth Century History 123B Europe in War and Revolution History 123C Europe Since Hitler History 140A-B Early Modern Britain History 153 Comparative Seaborne Empires 1415 to 1825 History 155A-B History of Portugal History 155E Portugal Overseas History 156A History of Mexico History 156I Indians of Mexico History of Brazil History 157A-B @& History 160A-B The American South History 164C Civil War and Reconstruction @& * History 164IA-IB American Immigration Proseminar of the History of America's History 164PR Racial Minorities History 165 America in the Gilded Age, 1876 to 1900 History 166A-B-C United States in the Twentieth Century History 166LB United States Legal History History 168E History of the Chicano Movement History 168F Racism in American History History 168M Middle Eastern Americans History 168N Interracial Intimacy History 169M History of Afro-American Thought History 173T American Environmental History History 176A-B The American West History 177 History of California History 178A-B American Urban History @& * History 179A Native American History to 1838 History 179B Native American History, 1838 to Present (a)& Japanese 167A Religion in Japanese Culture Latin American and Iberian Introduction to the Latin American and Studies 10 Iberian World Latin American and Iberian Introduction to Latin American and Iberian Studies 100 Studies Latin American and Iberian Special Topics in Latin American and Studies 194RR Iberian Studies Linguistics 113 Introduction to Semantics Linguistics 114 Advanced Phonology Linguistics 131 Sociolinguistics Linguistics 137 Introduction to First Language Acquisition Linguistics 138 Language Socialization Materials 10 Materials in Society: The Stuff of Dreams Molecular, Cellular, and (a) (a) a, (a) (a) (a) a, **EEMB 135** **EEMB 138** Evolutionary Ecology Ethology and Behavioral Ecology Developmental Biology 134H Animal Virology-Honors This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. [@] This course applies toward the American History & Institutions requirement. This course applies toward the European Traditions requirement. Molecular, Cellular, and Developmental Biology 138 Molecular, Cellular, and Developmental Biology 149 Music 12 Music 112AB-C-D-E-F Philosophy 7 Physics 13AH Physics 128AL-BL Political Science 6 Political Science 7 Political Science 127 Political Science 129 Political Science 152 (a) Political Science 153 Political Science 157 (a) Political
Science 158 (a) Political Science 162 (a) Political Science 165 Political Science 167 Political Science 168 (a) Political Science 176 Political Science 180 (a) Political Science 185 Psychology 90A-B-C Psychology 110L Psychology 111L Psychology 112L Psychology 114L Psychology 116L Psychology 117L Psychology 118L Psychology 120L Psychology 135A-B-C Psychology 143S Religious Studies 106 Religious Studies 110D Religious Studies 114D Religious Studies 124 Religious Studies 127B Religious Studies 131F Religious Studies 131J Religious Studies 140A Religious Studies 140B Religious Studies 140C Religious Studies 140E Religious Studies 141C Religious Studies 145 Religious Studies 163 Religious Studies 166A Religious Studies 166B Religious Studies 166C Religious Studies 166E Religious Studies 167A Religious Studies 178 Religious Studies 189A Religious Studies 189B Religious Studies 193 Sociology 128 Sociology 130 Sociology 130LA Sociology 130ME Sociology 134R Sociology 134RC @& * Sociology 137E Sociology 139A Sociology 140 Sociology 154A Medical Immunology Mariculture for the 21st Century Introduction to Music Literature History of Music Biomedical Ethics Honors Experimental Physics Advanced Experimental Physics Introduction to Comparative Politics Introduction to International Relations American Foreign Policy The United States, Europe, and Asia in the Twenty-First Century American Political Parties Political Interest Groups The American Presidency Power in Washington Urban Government and Politics Criminal Justice Constitutional Law: The Bill of Rights Constitutional Law: Civil Rights Black Politics in America Bureaucracy and Public Policy Government and the Economy First-Level Honors Seminar Laboratory in Perception Laboratory in Biopsychology Laboratory in Social Behavior Laboratory in Personality Laboratory in Animal Learning Laboratory in Human Memory and Cognition Laboratory in Attention Advanced Research Laboratory Field Experience in Psychological Settings Seminar in Social Development Modernity and the Process of Secularization Ritual Art and Verbal Art of the Pacific Northwest Religion and Healing in Native America The History of Religions in Aztlan Christian Thought and Cultures of the Middle Ages The History of Anti-Semitism Introduction to Rabbinic Literature Islamic Traditions Religion, Politics, and Society in the Persian Gulf Region Islamic Mysticism and Religious Thought Islam in America Sociology of Religion: Church and State Relations Patterns in Comparative Religion Images of Japan: The Ideology of Representation Religion in Chinese Culture Taoist Traditions of China Confucian Traditions: The Classical Period The Flowering of Chinese Buddhism Religion in Japanese Culture The Body Religious in Chinese Culture History of Arabic Literature in Translation Critical Readings in Medieval Arabic Literature in Translation Religion and Ecology of the Americas Interethnic Relations Development and its Alternatives Development and Social Change in Latin America Development and Social Change in the Middle East The Sociology of Revolutions Radical Social Change Sociology of the Black Experience Black and White Relations Aging in American Society Sociology of the Family Sociology 154F &* Sociology 155A Sociology 155M Sociology 155W Sociology 156A Sociology 157 Sociology 170 Sociology 176A Spanish 109 Speech & Hearing Sciences 50 Theater 1 Theater 91 Theater 180F Theater 185TH Writing 110L Writing 110MK Writing 160 The Chicano Family Women in American Society Contemporary U.S. Women's Movements Chicanas and Mexican Women in Contemporary Society Introduction to Women, Culture, and Development Radicalism in Contemporary Life Sociology of Deviant Behavior Sociology of AIDS Spanish in the United States: The Language and its Speakers Introduction to Communication Disorders Play Analysis Summer Theater in Orientation Asian American Theater Theory Advanced Legal Writing Professional Communications in Marketing and Public Relations Theory and Practice of Writing Center Consulting This course applies toward the European Traditions requirement. This course applies toward the writing requirement. [&]amp; This course applies toward the ethnicity requirement. ### **CHECKLIST OF GENERAL UNIVERSITY AND GENERAL EDUCATION REQUIREMENTS** | - | and Even | a = \\/=itim == 1 1 1 = | an Lina 11 | 0 | | d ammunusiata aaaa | | |----------------------|---|---|--|--|--
--|-------------------------| | ass | seu Exam | _ or vvnung i, iE | or Ling 12 | | _ or transferred | d appropriate course _ | | | me | erican History and | Institutions* – | (Refer to p | page 10 for the | list of acceptable | courses.) | | | ne | course | or Advanced I | Placement | t | or Internation | al waiver | | | 'Thi | s course may also apply | to the General Educa | ation require | ments, if appropr | iate. | | | | l o n
\ co | | es total from the s | ame depa | | | ral Education Areas D, l
Course total in Areas D, | | | | eral Subject Areas
Area A: English F | | nposition | 1 | | | | | | A1: Writing 2 or 2E | | and | A1: Writing | 50, 50E, 107T | or 109ST | _ | | 2. | Areas D and E: S | ocial Sciences, | Culture a | nd Thought | (2 courses mini | mum) | | | | Areas F and G: A | rts and Literatur | re (2 cours | ses minimum |) | | | | | Two additional according | | | | | | | | | | rses from D, E, F, | G, or H (I | Foreign Langı | uage): | | | | n the | cial Subject Areas e process of fulfilling t irements, as outlined Writing Requireme | he G.E. General So
on page 9. Only a | ubject Area | requirements,
ourses can be | students must ful | fill the following Special Siese requirements. In any series of the ser | | | n the | cial Subject Areas e process of fulfilling t irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to | he G.E. General So
on page 9. Only a
ent
es which require t
———————————————————————————————————— | ubject Area pproved co he writing of the follo | requirements, ourses can be of one or moreowing options: | students must ful used to fulfill the re papers totalin | ese requirements. | s.
course has | | the | cial Subject Areas e process of fulfilling t irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to | he G.E. General So
on page 9. Only a
ent
es which require t
———————————————————————————————————— | ubject Area pproved co he writing of the follocourses from | requirements, ourses can be of one or moreowing options: | students must ful used to fulfill the re papers totaline rate departments, G or H may k | ng at least 1,800 words ts, in each of which a | course has requirement. | | the equi | cial Subject Areas e process of fulfilling to irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to already been comp | he G.E. General So
on page 9. Only a
ent
es which require t
———————————————————————————————————— | he writing of the follocourses fress from | of one or more owing options: from two separater or Upper Div | students must ful used to fulfill the re papers totaling rate departments, G or H may be ision) | ng at least 1,800 words ts, in each of which a pe used towards this | course has requirement. | | the equi | cial Subject Areas e process of fulfilling to irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to already been comp | he G.E. General Si
on page 9. Only a
ent
es which require t
———————————————————————————————————— | ubject Area pproved co he writing of the follor courses freses from arse 1 (Low | of one or more owing options: from two separates D, E, I er or Upper Div | students must ful used to fulfill the re papers totaling rate departments, G or H may be ision) | ts, in each of which a course 2 (Upper Division | course has requirement. | | n the | cial Subject Areas e process of fulfilling to irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to already been comp Depart Depart Depart Option 2: Complete | he G.E. General Si
on page 9. Only a
ent
es which require t
———————————————————————————————————— | he writing of the follocourses from arse 1 (Low | requirements, ourses can be of one or more owing options: from two separates D, E, I er or Upper Diversity of the appearance appear | students must ful used to fulfill the re papers totaling rate departments, G or H may be ision) | ts, in each of which a course 2 (Upper Division | course has requirement. | | n the | cial Subject Areas e process of fulfilling to irements, as outlined Writing Requirement At least four course Depth Requirement Option 1: At least to already been comp Depart Depart Depart Option 2: Complete | the G.E. General Su
on page 9. Only a
ent
es which require t
es which require t
wo upper division
leted. (Only cour
Cour
ment 1
ment 2
e a Three Course | begin and the second of the following of the following from the following of the following from followin | requirements, ourses can be of one or more owing options: from two separates D, E, I er or Upper Division the appearance of the or Upper Division Original | students must ful used to fulfill the re papers totaling rate departments, G or H may be ision) proved list on page page 9 for more | ts, in each of which a course 2 (Upper Divisionage 9. | course has requirement. | # Chemical Engineering Department of Chemical Engineering, Engineering II, Room 3357; Telephone (805) 893-3412 Web site: www.chemengr.ucsb.edu Chair: Michael Doherty Vice-Chairs: Patrick Daugherty ### **Faculty** **Bradley Chmelka,** Ph.D., UC Berkeley, Professor (self-assembled materials, heterogeneous catalysis, surfactants and polymers, porous and composite solids, magnetic resonance) Patrick S. Daugherty, Ph.D., University of Texas at Austin, Associate Professor (protein engineering and design, combinational molecular biology, gene targeting, viral vector engineering) **Michael F. Doherty**, Ph.D., Cambridge University, Professor (process design and synthesis, separations, crystal engineering) Francis J. Doyle III, Ph.D., California Institute of Technology, Mellichamp Professor of Process Control (process control, systems biology, nonlinear dynamics) **Glenn Fredrickson**, Ph.D., Stanford University, Professor (polymer theory, block copolymers, phase transitions, statistical mechanics, glass transitions, composite media) Michael J. Gordon, Ph.D., California Institute of Technology, Assistant Professor (surface physics, scanning probe microscopy, nanoscale materials, plasmonics, laser spectroscopy) **Matthew E. Helgeson,** Ph.D., University of Delaware, Assistant Professor (colloidal thermodynamics and rheology, polymer and surfactant self-assembly, nanomaterials, microfluidics) Jacob Israelachvili, Ph.D., University of Cambridge, Professor (surface and interfacial phenomena, adhesion, colloidal systems, surface forces, bio-adhesion, friction) *1 Edward J. Kramer, Ph.D., Carnegie Mellon University, Professor (microscopic fundamentals of fracture polymers, diffusion in polymers, and polymer surfaces, interfaces and thin films) *1 L. Gary Leal, Ph.D., Stanford University, Schlinger Distinguished Professor in Chemical Engineering (fluid mechanics, physics of complex fluids, rheology) **Gene Lucas**, Ph.D., Massachusetts Institute of Technology, Professor (structural materials, mechanical properties) *2 **Eric McFarland,** Ph.D., Massachusetts Institute of Technology, M.D., Harvard, Professor (energy production, catalysis, reaction engineering, charge and energy transfer) Samir Mitragotri, Ph.D., Massachusetts Institute of Technology, Professor (drug delivery and diagnostics, bio-membrane transport, membrane biophysics, biomedical ultrasound) Michelle A. O'Malley, Ph.D., University of Delaware, Assistant Professor (genetic and cellular engineering, membrane protein characterization for drug discovery, protein biophysics, metagenomics, biofuel production) **Baron G. Peters,** Ph.D., UC Berkeley, Assistant Professor (molecular simulation, chemical kinetics, catalytic reaction mechanisms, nucleation, electron transfer) Susannah Scott, Ph.D., lowa State University, Professor
(heterogeneous catalysis, surface organometallic chemistry; analysis of electronic structure and stoichiometric reactivity to determine catalytic function) *3 **M. Scott Shell,** Ph.D. Princeton, Assistant Professor (molecular simulation, statistical mechanics, complex materials, protein biophysics) **Todd M. Squires**, Ph.D., Harvard, Associate Professor (fluid mechanics, microfluidics, microrheology, complex fluids) **Theofanis G. Theofanous**, Ph.D., University of Minnesota, Professor, Center for Risk Studies and Safety Director (transport phenomena in multiphase systems, risk analysis) *2 - *1 Joint appointment with Materials - *2 Joint appointment with Mechanical Engineering - *3 Joint appointment with Chemistry and Biochemistry ### **Emeriti Faculty** Sanjoy Banerjee, Ph.D., University of Waterloo, Professor Emeritus (transport processes, multiphase systems, process safety) *2 **Owen T. Hanna**, Ph.D., Purdue University, Professor Emeritus (theoretical methods) **Duncan A. Mellichamp**, Ph.D., Purdue University, Professor Emeritus (process dynamics and control, digital computer control) **Robert G. Rinker**, Ph.D., California Institute of Technology, Professor Emeritus (chemical kinetics, reaction engineering, catalysis) **Orville C. Sandall**, Ph.D., UC Berkeley, Professor Emeritus (transport of mass, energy, and momentum; separation processes) **Dale E. Seborg**, Ph.D., Princeton University, Professor Emeritus (process dynamics and control, monitoring and fault detection, system identification) ### **Affiliated Faculty** Song-I Han, Ph.D. (Chemistry) **G. Robert Odette**, Ph.D. (Materials, Mechanical Engineering) Philip Alan Pincus, Ph.D. (Materials) We live in a technological society which provides many benefits including a very high standard of living. However, our society must address critical problems that have strong technological aspects. These problems include: meeting our energy requirements, safeguarding the environment, ensuring national security, and delivering health care at an affordable cost. Because of their broad technical background, chemical engineers are uniquely qualified to make major contributions to the resolution of these and other important problems. Chemical engineers develop processes and products that transform raw materials into useful products. The Department of Chemical Engineering offers the B.S., M.S., and Ph.D. degrees in chemical engineering. The B.S. degree is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. At the undergraduate level, emphasis is placed on a thorough background in the fundamental principles of science and engineering, strongly reinforced by laboratory courses in which students become familiar with the application of theory. At the graduate level, students take advanced courses and are required to demonstrate competence in conducting basic and applied research. The B.S. degree provides excellent preparation for both challenging industrial jobs and graduate degree programs. Interdisciplinary B.S./M.S degree programs are also available which result in M.S. degrees in other fields. Students who complete a major in chemical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education as soon as possible. Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Each undergraduate also is assigned a faculty advisor, to assist in selection of elective courses, plan academic programs, and provide advice on professional career objectives. Undergraduates in other majors who plan to change to a major in the Department of Chemical Engineering should consult the department academic advisor for the requirements. ### **Mission Statement** The program in Chemical Engineering has a dual mission: - Education. Our program seeks to produce chemical engineers who will contribute to the process industries worldwide. Our program provides students with a strong fundamental technical education designed to meet the needs of a changing and rapidly developing technological environment. - Research. Our program seeks to develop innovative science and technology that addresses the needs of industry, the scientific community, and society. # Educational Objectives for the Undergraduate Program We expect our graduates to become innovative, competent, contributing engineers in the process industries. - · We expect our graduates to demonstrate their flexibility and adaptability in the workplace, so that they remain effective engineers, take on new responsibilities, and assume leadership roles. - We expect at least an average of 15% of our graduates to continue their education by obtaining advanced degrees. ### **Program Outcomes** Upon graduation, graduates of the Chemical Engineering program at UCSB are expected to have: - 1. Fundamentals the fundamental knowledge of mathematics, computing, science, and engineering needed to practice chemical engineering and the ability to apply this knowledge to identify, formulate, and solve chemical engineering problem; - 2. Laboratory the ability to design and conduct experiments and to analyze and interpret data; - 3. Design the ability to design a system, component, or process to meet desired specifications; ability to use modern engineering tools necessary for engineering practice; - 4. Advanced Training beyond the basic fundamentals in at least one area of chemical engineering as preparation for a continuing process of lifelong learning; - 5. Teamwork/Communication the ability to function productively in multidisciplinary teams working towards common goals; the ability to communicate effectively through written reports and oral presentations; - 6. Engineering & Society the broad education necessary to understand the impact of engineering solutions in a global/societal context; a knowledge of contemporary issues; an understanding of professional and ethical responsibility; a recognition of the need for and the ability to engage in lifelong learning. ### Undergraduate Program ### Bachelor of Science—Chemical **Engineering** A minimum of 194 units is required for graduation. A complete list of requirements for the major can be found on page 42. Schedules should be planned to meet both General Education and major requirements. Courses required for the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the pass/not pass grading option. They must be taken for letter grades. Twelve units of technical electives selected from a wide variety of upper-division science and engineering courses are also required. The list of approved technical electives is included on curriculum sheets. Prior approval of technical electives must be obtained from the department faculty advisor and the technical elective worksheet must be submitted to the department by fall quarter of the senior year. Transfer students who have completed most of the lower-division courses listed above and are entering the junior year of the chemical engineering program may take Chemical Engineering 10 concurrently with Chemical Engineering 120A in the fall quarter. # Chemical Engineering Courses ### LOWER DIVISION ### 1A. Engineering and the Scientific Method Engineering and its relationship to basic science, with specific examples from engineering practice. Analysis and synthesis of engineering education. Career opportunities for chemical engineering graduates. Seminar/discussion format with guest lecturers and current experiences/issues from students' other freshman engineering/science ### 10. Introduction to Chemical Engineering (3) DAUGHERTY, GORDON Prerequisites: Chemistry 1A-B-C or 2A-B-C; Mathematics 3A-B and Mathematics 3C or Mathematics 4A; and Engineering 3; chemical engineering majors only. Elementary principles of chemical engineering. The major topics discussed include material and energy balances, stoichiometry, and thermodynamics. ### 55. Chem-E-Car Activity (1) STAFF Prerequisite: Chem 1C and 1CL. Students apply chemistry and engineering knowledge to design a model-scale, chemically powered car with chemically actuated brakes. The cars represent UCSB at American Institute of Chemical Engineering meetings. Grading is based on participation, design creativity, and car performance ### 99. Introduction to Research (1-3) STAFF Prerequisites: consent of instructor and undergraduate advisor. May be repeated for credit to a maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. Directed study, normally experimental, to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group. ### **UPPER DIVISION** ### 102. Biomaterials and Biosurfaces (3) ISRAELACHVILI Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and biology. Not open for credit to students who have completed Chemical Engineering 121. Fundamentals of natural and artificial biomaterials and biosurfaces with emphasis on molecular level structure and function and the interactions of biomaterials and surfaces with the body. Design issues of grafts and biopolymers. Basic biological and biochemical systems reviewed for nonbiologists ### 110A. Chemical Engineering Thermodynamics Prerequisite: Chemical Engineering 10; Mathematics 5A or Mathematics 4B; Engineering majors only. Use of the laws of thermodynamics to analyze processes encountered in engineering practice, including cycles and flows. Equations-of-state for describing properties of fluids and mixtures. Applications, including engines, turbines, refrigeration and power plant cycles, phase equilibria, and chemical-reaction equilibria. ### 110B. Chemical Engineering Thermodynamics
Prerequisite: Chemical Engineering 110A; Mathematics 5A or Mathematics 4B; Engineering Extension of Chemical Engineering 110A to cover mixtures and multiphase equilibrium. Liquidvapor separations calculations are emphasized. Introduction to equations of state for mixtures. ### 119. Current Events in Chemical Engineering (1) STAFF Prerequisites: Chemical Engineering 110A-B. Assigned readings in technical journals on current events of interest to chemical engineers. Student groups present oral reports on reading assignments pertaining to new technologies, discoveries, industry challenges, society/government issues, professional and ethical responsibilities. ### 120A. Transport Processes (4) SQUIRES, MITAGOTRI Prerequisites: Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B. Introductory course in conceptual understanding and mathematical analysis of problems in fluid dynamics of relevance to Chemical Engineering. Emphasis is placed on performing microscopic and macroscopic mathematical analysis to understand fluid motion in response to forces. #### 120B. Transport Processes (3) STAFF Prerequisite: Chemical Engineering 120A; Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B; and Physics 4. Introductory course in the mathematical analysis of conductive, convective and radiative heat transfer with practical applications to design of heat exchange equipment and use. ### 120C. Transport Processes Prerequisite: Chemical Engineering 120B, Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B; and Physics 4. Introductory course in the fundamentals of mass transfer with applications to the design of mass transfer equipment ### 121. Colloids and Biosurfaces (3) ISRAELACHVILI Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and Not open for credit to students who have completed Chemical Engineering 102. Basic forces and interactions between atoms. molecules, small particles and extended surfaces. Special features and interactions associated with (soft) biological molecules, biomaterials and surfaces: lipids, proteins, fibrous molecules (DNA), biological membranes, hydrophobic and hydrophilic interactions, bio-specific and non-equilibrium interactions. ### 124. Advanced Topics in Transport Phenomena/Safety (3) THEOFANOUS Prerequisites: Chemical Engineering 120A-B-C or Mechanical Engineering 151A-B; and Mechanical Engineering 152A. Same course as ME 124. Hazard identification and assessments, runaway reactions, emergency relief. Plant accidents and safety issues. Dispersion and consequences of releases. ### 125. Principles of Bioengineering (3) MITRAGOTRI Applications of engineering to biological and medical systems. Introduction to drug delivery, tissue engineering, and modern biomedical devices. Design and applications of these systems are discussed ### 128. Separation Processes (3) SCOTT Prerequisites: Chemical Engineering 10 and 110A-B; open to College of Engineering majors only. Basic principles and design techniques of equilibrium-stage separation processes. Emphasis is placed on binary distillation, liquid-liquid extraction, and multicomponent distillation. ### 132A. Analytical Methods in Chemical Engineering (4) FREDRICKSON, GORDON Prerequisites: Mathematics 5A or Mathematics 4B; Mathematics 5B or Mathematics 6A. Develop analytical tools to solve elementary partial differential equations and boundary value problems. Separation of variables, Laplace transforms, Sturm- Liouville theory, generalized Fourier analysis, and computer math tools. ### 132B. Computational Methods in Chemical Engineering (3) FREDRICKSON, GORDON Prerequisite: Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B. Numerical methods for solution of linear and nonlinear algebraic equations, optimization, interpolation, numerical integration and differentiation, initial- value problems in ordinary and partial differential equations, and boundary-value problems. Emphasis on computational tools for chemical engineering applications ### 132C. Statistical Methods in Chemical Engineering (3) PETERS Prerequisites: Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B. Probability concepts and distributions, random variables, error analysis, point estimation and confidence intervals, hypothesis testing, development of empirical chemical engineering models using regression techniques, design of experiments, process monitoring based on statistical quality control techniques. ### 136. Introduction to Multiphase Flows (3) THEOFANOUS Prerequisites: Chemical Engineering 120A-B-C, or Mechanical Engineering 151C and 152A. Same course as ME 136. Development from basic concepts and techniques of fluid mechanics and heat transfer, to local behavior in multiphase flows. Key multiphase phenomena, related physics. Extension of local conservation principles to usable formulations in multiphase flows. Modelling approaches. Practical # 138. Risk Assessment and Management Prerequisites: Chemical Engineering 120A-B-C; or Mechanical Engineering 151B and 152A. Same course as ME 138. Conceptual foundations of risk and its utility for decision making. Determinism, statistical inference, and uncertainty. Formulation of safety goals and approaches to risk management. Generalized methodology and tools for assessing risks in the industrial, ecological, and public health context. #### 140A. Chemical Reaction Engineering (3) MCFARLAND, SCOTT Prerequisites: Chemical Engineering 110A and 120A-B Fundamentals of chemical reaction engineering with emphasis on kinetics of homogenous and heterogeneous reacting systems. Reaction rates and reaction design are linked to chemical conversion and selectivity. Batch and continuous reactor designs with and without catalysts are examined. ### 140B. Chemical Reaction Engineering (3) CHMELKA, MCFARLAND Prerequisites: Chemical Engineering 110A, 120A-B Thermodynamics, kinetics, mass and energy transport considerations associated with complex homogeneous and heterogeneous reacting systems. Catalysts and catalytic reaction rates and mechanisms. Adsorption and reaction at solid surfaces, including effects of diffusion in porous materials. Chemical reactors using heterogeneous ### 141. The Science and Engineering of Energy Conversion Prerequisite: Chemical Engineering 110A and 140A. Equivalent upper-division coursework in thermodynamics and kinetics from outside of department will be considered. Framework for understanding the energy supply issues facing society with a focus on the science, engineering, and economic principles of the major alternatives. Emphasis will be on the physical and chemical fundamentals of energy conversion technologies. #### 152A. Process Dynamics and Control (4) DOYLE Prerequisites: Chemical Engineering 120A-B-C and 140A Development of theoretical and empirical models for chemical and physical processes, dynamic behavior of processes, transfer function and block diagram representation, process instrumentation, control system design and analysis, stability analysis, computer simulation of controlled #### 152B. Advanced Process Control (3) DOYLE Prerequisite: Chemical Engineering 152A. The theory, design, and experimental application of advanced process control strategies including feedforward control, cascade control, enhanced single-loop strategies, and model predictive control. Analysis of multi-loop control systems. Introduction to on-line optimization. ### 154. Engineering Approaches to Systems Biology Prerequisite: Chemical Engineering 170 and Mathematics 5A or Mathematics 4B; Mathematics 5B-C or Mathematics 6A-B. Applications of engineering tools and methods to solve problems in systems biology. Emphasis is placed on integrative approaches that address multi-scale and multi-rate phenomena in biological regulation. Modeling, optimization, and sensitivity analysis tools are introduced. ### 160. Introduction to Polymer Science (3) KRAMER Prerequisite: Chemistry 109A-B. Same course as Materials 160. Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions. ### 170. Molecular and Cellular Biology for Engineers Prerequisite: Chemical Engineering 120A-B-C, 140A and Chemistry 109C. Not open for credit to students who have completed Ch E 172. Introduction to molecular and cellular biology from an engineering perspective. Topics include protein structure and function, transcription, translation, post- translational processing, cellular organization, molecular transport and trafficking, and cellular models ### 171. Introduction to Biochemical Engineering (3) DAUGHERTY Prerequisite: Chemical Engineering 170. Introduction to biochemical engineering covering cell growth kinetics, bioreactor design,enzyme processes, biotechnologies for modification of cellular information, and molecular and cellular engineering. ### 179. Biotechnology Laboratory (4) DAUGHERTY Prerequisite: Chemical Engineering 170 or MCDB 1A or Chemistry 142A-B or Consent of Instructor. Must have an overall grade point average of 3.3 This course will provide an introduction to theoretical principles and practical methods used in modern biotechnology, genetic engineering, and synthetic biology. Topics will include protein and cellular engineering using recombinant DNA technologies, mutagenesis, library construction, and biosynthetic display technologies. # 180A Chemical Engineering Laboratory Prerequisites: Chemical Engineering 110A and 120A-B. Experiments in thermodynamics, fluid mechanics, heat transfer, mass transfer, and chemical processing. Analysis of results, and preparation of reports. #### 180B Chemical Engineering Laboratory (3) STAFF Prerequisites: Chemical Engineering 120C, 128, 140A, and
152A. Experiments in mass transfer, reactor kinetics, process control, and chemical and biochemical processing. Analysis of results, and preparation of reports. #### 184A. Design of Chemical Processes (3) DOHERTY Prerequisites: Chemical Engineering 110A-B, 120A-B-C,128, 132B, 140A-B, and 152A. Application of chemical engineering principles to plant design. Conceptual design of chemical processes. Flowsheeting methods. Engineering cost principles and economic aspects. #### 184B. Design of Chemical Processes (3) DOHERTY Prerequisites: Chemical Engineering 184A. The solution to comprehensive plant design problems. Use of computer process simulators. Optimization of plant design, investment and operations. ### 194. Group Studies for Advanced Students (1-4) STAFF Prerequisites: consent of instructor. Limited to majors in the College of Engineering. Check with department for quarters offered. Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum. ### 196. Undergraduate Research (2-4) STAFF Prerequisite: Upper-division standing, completion of 2 upper-division courses in Chemical Engineering; consent of the instructor. Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. Not more than 3 units may be applied to departmental electives. Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research. ### 198. Independent Studies in Chemical Engineering (1-5) STAFF Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in chemical engineering. Must have a minimum 3.0 grade-pointaverage for the preceding three quarters. May be repeated up to twelve units. Students are limited to five units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. Directed individual studies. ### **GRADUATE COURSES** Graduate courses for this major can be found in the UCSB General Catalog. # Computer Engineering Computer Engineering Major, Trailer 380, Room 101; Telephone (805) 893-5615 E-mail: info@ce.ucsb.edu Web site: www.ce.ucsb.edu Director: Frederic T. Chong Associate Director: Forrest Brewer ### **Faculty** **Kevin Almeroth**, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems) **Kaustav Banerjee**, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration) Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis) **Tevfik Bultan**, Ph.D., University of Maryland, College Park, Professor (specification and automated analysis of concurrent systems, computer-aided verification, model checking) **Kwang-Ting (Tim) Cheng**, Ph.D., UC Berkeley, Professor (design automation, VLSI testing, design synthesis, design verification, algorithms) Frederic T. Chong, Ph.D., Massachusetts Institute of Technology, Professor (computer architecture, novel computing technologies, quantum computing, embedded systems, and architectural support for system security and reliability) Chandra Krintz, Ph.D., University of California, San Diego, Professor (dynamic and adaptive compilation systems, highperformance internet (mobile) computing, runtime and compiler optimizations for Java/ CIL, efficient mobile program transfer formats) Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Professor (design automation, computeraided design, integrated circuit layout, logic synthesis) P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal specification and verification, distributed systems, communication networks and protocols, asynchronous systems) Louise E. Moser, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation) **Behrooz Parhami**, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing) **Volkan Rodoplu**, Ph.D., Stanford University, Associate Professor (wireless networks, energy-efficient and device-adaptive communications) **Tim Sherwood**, Ph.D., UC San Diego, Associate Professor (computer architecture, dynamic optimization, network and security processors, embedded systems, program analysis and characterization, and hardware support of software systems) **Dmitri B. Strukov**, Ph.D., Stony Brook University, Assistant Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing) Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Assistant Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication) **Li-C. Wang**, Ph.D., University of Texas at Austin, Professor (design verification, testing, computer-aided design of microprocessors) Richard Wolski, Ph.D., UC Davis/Livermore, Professor (high-performance distributed computing, computational grids, computational economies for resource allocation and scheduling) Patrick Yue, Ph.D., Stanford University, Professor (high-speed CMOS IC design, cellbased RF CAD methodology and integrated biomedical sensors) **Ben Zhao**, Ph.D., University of California, Berkeley, Associate Professor (computer/ overlay/mobile networking, large-scale distributed systems, operating systems, network simulation and modeling) Heather Zheng, Ph.D., University of Maryland, College Park, Associate Professor (wireless/mobile/ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modeling) The Computer Engineering major's objective is to educate broadly based engineers with an understanding of digital electronics, computer architecture, system software and integrated circuit design. These topics bridge traditional electrical engineering and computer science curricula. The Computer Engineering degree program is conducted jointly with faculty from the Department of Computer Science and the Department of Electrical and Computer Engineering. Computer engineers emerging from this program will be able to design and build integrated digital hardware and software systems in a wide range of applications areas. Computer engineers will seldom work alone and thus teamwork and project management skills are also emphasized. The undergraduate major in Computer Engineering prepares students for a wide range of positions in business, government and private industrial research, development and manufacturing organizations. Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Faculty advisors are also available to help with academic program planning. Students who hope to change to this major should consult the department advisor. The Computer Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. ### **Mission Statement** To prepare our students to reach their full potential in computer engineering research and industrial practice through a curriculum emphasizing the mathematical tools, scientific basics, fundamental knowledge, engineering principles, and practical experience in the field. ### **Educational Objectives** The Computer Engineering Program seeks to produce graduates who: - Make positive contributions to society by applying their broad knowledge of computer engineering theories, techniques, and tools. - Create processes and products, involving both hardware and software components, that solve societal and organizational problems effectively, reliably, and economically. - Are committed to the advancement of science, technical innovation, lifelong learning, professionalism, and mentoring of future generations of engineers. - Understand the ethical, social, business, technical, and human contexts of the world in which their engineering contributions will be utilized. ### **Program Outcomes** Upon completion of this program, students will have: - Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and engineering necessary to facilitate specialized professional training at an advanced level. Developed a recognition of the need for and the ability to engage in lifelong learning. - Experienced in-depth training in stateof-the-art specialty areas in computer engineering. - 3) Benefited from hands-on, practical laboratory experiences where appropriate throughout the program. The laboratory experiences will be closely integrated with coursework and will make use of upto-date instrumentation and computing facilities. Students will have completed both hardware-oriented and software-oriented assignments. - 4) Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired during their course of study. These challenges may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and test a system, analyze experimental results, and draw logical conclusions from them. - 5) Learned to function well in multidisciplinary teams and collaborative envi- ronments. To this end, students must
develop communication skills, both written and oral, through teamwork and classroom participation. Teamwork and individual originality will be evidenced through written reports, webpage preparation, and public presentations. 6) Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This outcome provides for the ability to understand the impact of engineering solutions in a global and societal context. A required course in engineering ethics will have prepared students for making professional contributions while maintaining institutional and individual integrity. ### **Undergraduate Program** ### Bachelor of Science—Computer Engineering A minimum of 189 units is required for graduation. A complete list of requirements for the major can be found on page 44. Schedules should be planned to meet both General Education and major requirements. The curriculum contains a core required of all computer engineers, a choice of at least 40 units of senior year elective courses including completion of two out of ten elective sequences and a senior year capstone design project. Because the Computer Engineering degree program is conducted jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering, several of the upper-division courses have equivalent versions offered by ECE or CMPSC. These courses are considered interchangeable, but only one such course of a given equivalent ECE/CMPSC pair may be taken for credit. Courses required for the major, whether inside or outside of the Departments of Electrical and Computer Engineering or Computer Science, must be taken for letter grades. They cannot be taken for the passed/not passed grading option. The upper-division requirements consist of a set of required courses and a minimum of 40 units (10 classes) of additional departmental elective courses comprised of at least two sequences chosen from a set of eight specialty sequences. Each sequence must consist of two or more courses taken from the same course/sequence group. The department electives must also include a capstone design project (CMPSC 189A-B/ECE 189A-B). Upper-division courses required for the major are: Computer Science 130A, 170; ECE 152A, 154, 156A; either ECE 139 or PSTAT 120A; Engineering 101. The required departmental electives are taken primarily in the senior year; they permit students to develop depth in specialty areas of their choice. A student's elective course program and senior project must be approved by a departmental faculty advisor. A variety of elective programs will be considered acceptable. Sample programs include those with emphasis in: computer-aided design (CAD); computer systems design; computer networks; distributed systems; programming languages; real-time computing and control; multimedia; and very large-scale integrated (VLSI) circuit design. The defined sequences from which upper-division departmental electives may be chosen are: - Computer Systems Design: ECE/CMPSC 153A, ECE 153B - Computer Networks: ECE 155A/CMPSC 176A, ECE 155B/CMPSC 176B - Distributed Systems: ECE 151/CMPSC 171 and one or both of the Computer Networks courses - Programming Languages: CMPSC 160, 162 - Real-Time Computing & Control: ECE 147A-B, 157 - Multimedia: ECE 178, ECE/CMPSC 181B, ECE 160/CMPSC 182 - VLSI: ECE 124A, 124D - Signal Processing: ECE 130A-B # Satisfactory Progress and Prerequisites A majority of Computer Science and Electrical and Computer Engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite classes requires a grade of C or better in Mathematics 3A-B-C and a grade of C- or better in ECE classes. Students will not be permitted to take any ECE or CMPSC course if they received a grade of F in one or more of its prerequisites. Students who fail to maintain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major. # Computer Engineering Courses See listings for Computer Science starting on page 25 and Electrical and Computer Engineering starting on page 30. # Computer Science Department of Computer Science, Harold Frank Hall, Room 2104; Telephone (805) 893-4321 Web site: www.cs.ucsb.edu Chair: Subhash Suri Vice Chair: Elizabeth Belding ### Faculty **Divyakant Agrawal**, Ph.D., State University of New York at Stony Brook, Professor (distributed systems and databases) **Kevin Almeroth**, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems) Elizabeth Belding, Ph.D., University of California, Santa Barbara, Professor (mobile wireless networking, network performance evaluation, advanced service support, solutions for developing and under-developed regions) **Tevfik Bultan**, Ph.D., University of Maryland, College Park, Professor (web software and services, dependability, concurrency, automated verification, static analysis, software engineering) **Peter R. Cappello**, Ph.D., Princeton University, Professor (JAVA/ internet-based parallel computing, multiprocessor scheduling, market-based resource allocation, selfdirected learning) Frederic T. Chong, Ph.D., Massachusetts Institute of Technology, Professor (computer architecture, novel computing technologies, quantum computing, embedded systems, and architectural support for system security and reliability) Phillip Conrad, Ph.D., University of Delaware, Lecturer LSOE (computer science education, web technologies, computer networks and communication, transport protocols, multimedia computing)*1 Ömer Egecioglu, Ph.D., University of California, San Diego, Professor (bijective and enumerative combinatorics, parallel algorithms, approximation algorithms, combinatorial algorithms) **Amr El Abbadi**, Ph.D., Cornell University, Professor (Information and data management; distributed systems, cloud computing) **Diana Franklin**, Ph.D., University of California, Davis, Lecturer SOE (computer architecture, architectural support for reliability, embedded systems, undergraduate teaching methods for diverse populations) **Frederic Gibou**, Ph.D., University of California, Los Angeles, Professor (High resolution multiscale simulation, scientific computing, tools and software for computational science and engineering, engineering applications)*² **John R. Gilbert**, Ph.D., Stanford University, Professor (combinatorial scientific computing, high-performance graph algorithms, tools and software for computational science and engineering, numerical linear algebra) Teofilo Gonzalez, Ph.D., University of Minnesota, Professor (approximation algorithms; parallel computing multicasting; scheduling theory: placement and routing: computational geometry; analysis of algorithms) Ben Hardekopf, Ph.D., University of Texas at Austin, Assistant Professor (programming languages: design, analysis and implementation) Tobias Höllerer, Ph.D., Columbia University, Associate Professor (human computer interaction; augmented reality; virtual reality; visualization; computer graphics; 3D displays and interaction; wearable and ubiquitous computing) Richard A. Kemmerer, Ph.D., University of California, Los Angeles, Professor (specification and verification of systems, computer system security and reliability, programming and specification language design, software engineering) Chandra Krintz, Ph.D., University of California, San Diego, Professor (programming language implementations, dynamic and adaptive program analysis and optimization, mobile and distributed programming systems, cloud computing platforms (AppScale)) Christopher Kruegel, Ph.D., Vienna University of Technology, Associate Professor (computer security, program analysis, operating systems, network security, malicious code analysis and detection) Linda R. Petzold, Ph.D., University of Illinois at Urbana-Champaign, Professor (modeling, simulation and analysis of multiscale systems in systems biology and engineering)*2 Tim Sherwood, Ph.D., University of California, San Diego, Associate Professor (computer architecture, secure processors, embedded systems, program analysis and characterization) Ambuj Singh, Ph.D., University of Texas at Austin. Professor (network science. cheminformatics & bioinformatics, graph querying and mining, databases)*3 Jianwen Su, Ph.D., University of Southern California, Professor (database systems, Web services, workflow management and BPM) Subhash Suri, Ph.D., Johns Hopkins University, Professor (algorithms, networked sensing, data streams, computational geometry, game theory) Matthew Turk, Ph.D., Massachusetts Institute of Technology, Professor (computer vision, human computer interaction, perceptual computing, artificial intelligence) Wim van Dam, Ph.D., University of Oxford and University of Amsterdam, Associate Professor (quantum computation, quantum algorithms, quantum communication, quantum information theory)*5 Giovanni Vigna, Ph.D., Politecnico di Milano, Professor (computer and network security, intrusion detection, vulnerability, analysis and security testing, web security, malware Yuan-Fang Wang, Ph.D., University of Texas at Austin, Professor (computer vision, computer graphics, artificial intelligence) Richard Wolski. Ph.D.. University of California, Davis/Livermore, Professor (cloud computing, high-performance distributed computing, computational grids, and computational economies for resource allocation and scheduling) Xifeng Yan. Ph.D., University of Illinois at Urbana Champaign, Associate Professor (data mining, data management, machine learning, bioinformatics, information networks) Tao Yang, Ph.D., Rutgers University, Professor (parallel and distributed systems, Internet search, and high performance computing) Ben Zhao, Ph.D., University of California, Berkeley, Associate Professor (online social networks, data-intensive computing, cloud computing, dynamic
spectrum networks, anonymity and privacy, distributed systems) Heather Zheng, Ph.D., University of Maryland, College Park, Associate Professor (wireless/mobile/ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modelina) ### **Emeriti Faculty** Oscar H. Ibarra, Ph.D., University of California, Berkeley, Professor (design and analysis of algorithms, theory of computation, computational complexity, parallel computing) Alan G. Konheim, Ph.D., Cornell University, Professor Emeritus (computer communications, computer systems, modeling and analysis, cryptography) Marvin Marcus, Ph.D., University of California, Berkeley, Professor Emeritus (linear and multilinear algebra, scientific computation, numerical algorithms) Terence R. Smith, Ph.D., Johns Hopkins University, Professor Emeritus (spatial databases, techniques in artificial machine intelligence)*4 Roger C. Wood, Ph.D., University of California, Los Angeles, Professor Emeritus (computer system modeling, design and analysis, computer architecture)*6 - *1 Joint appointment with College of Creative Studies *2 Joint appointment with Mechanical Engineering - *3 Joint appointment with Biomolecular Science & Engineering - *4 Joint appointment with Geography - *5 Joint appointment with Physics - *6 Joint appointment with Electrical & Computer Engineering ### **Affiliated Faculty** B.S. Manjunath, Ph.D., (Electrical and Computer Engineering) P. Michael Melliar-Smith, Ph.D. (Electrical and Computer Engineering) Kenneth Rose, Ph.D. (Electrical and Computer Engineering) Martin Raubal, Ph.D. (Geography) Many of the greatest challenges facing our world today are increasingly reliant on computing for their solutions — from conquering disease to eliminating hunger, from improving education to protecting the climate and environment. Information is key to all of these efforts, and computer scientists make it possible to visualize, secure, explore, transmit, and transform this information in ways never before thought possible. Solving problems through computation means teamwork, collaboration. and gaining the interdisciplinary skills that modern careers demand. Our goal with the Computer Science curriculum at UCSB is to impart to students the knowledge and experience required for them to participate in this exciting and high-impact discipline. ### Mission Statement The Computer Science Department seeks to prepare undergraduate and graduate students for productive careers in industry. academia, and government, by providing an outstanding environment for teaching and research in the core and emerging areas of the discipline. The department places high priority on establishing and maintaining innovative research programs that enhance educational opportunity. The Department of Computer Science offers programs leading to the degrees of Bachelor of Arts and Bachelor of Science in computer science, and the M.S. and Ph.D. in computer science. The B.A. is a College of Letters and Science major; the B.S. is a College of Engineering major. The B.S. degree program in computer science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org. One of the most important aspects of the Computer Science program at UCSB is the wealth of "hands-on" opportunities for students. UCSB has excellent computer facilities. Campus Instructional Computing makes accounts available to all students. Computer Science majors and premajors use the workstations in the Computer Science Instructional Lab and Engineering Computing Infrastructure computing facilities. Students doing special projects can gain remote access to machines at the NSF Supercomputing Centers. Additional computing facilities are available for graduate students in the Graduate Student Laboratory. Students working with faculty have access to the specialized research facilities within the Department of Computer Science. The undergraduate major in computer science has a dual purpose: to prepare students for advanced studies and research and to provide training for a variety of careers in business, industry, and govern- Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. A faculty advisor is also available to help with academic program planning. # Program Goals for Undergraduate Programs The goal of the computer science undergraduate program is to prepare future generations of computer professionals for long-term careers in research, technical development, and applications. Graduates of the B.S. and B.A. programs that wish to seek immediate employment are prepared for a wide range of computer science positions in industry and government. Outstanding graduates interested in highly technical careers, research, and/or academia, might consider furthering their education in graduate school. The primary computer science departmental emphasis is on problem solving using computer program design, analysis and implementation, with both a theoretical foundation and a practical component. # **Program Outcomes for Undergraduate Programs** The program enables students to achieve, by the time of graduation: - An ability to apply knowledge of computing and mathematics appropriate to computer science. - An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution. - An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs. - 4. An ability to function effectively on teams to accomplish a common goal. - An understanding of professional, ethical, and social responsibilities. - 6. An ability to communicate effectively. - An ability to analyze the impact of computing on individuals, organizations, and society, including ethical, legal, security, and global policy issue. - Recognition of the need for and an ability to engage in continuing professional development. - An ability to use current techniques, skills, and tools necessary for computing practice. - 10. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computerbased systems in a way that demonstrates comprehension of the trade-offs involved in design choices. - An ability to apply design and development principles in the construction of software systems of varying complexity. ### **Admission to the Major** Students interested in computer science who apply to UCSB should declare the computer science major when they apply. UCSB students in majors other than computer science major can petition to the Department of Computer Science for consideration for admission via change-of-major once they complete the minimum requirements (specified on the departmental web pages) for doing so. Computer Science majors have priority when registering for all Computer Science courses Students admitted to the computer science major are responsible for satisfying major requirements in effect when they declare their major. Upper and lower division courses required for the major that are offered by the Department of Computer Science or any other department must be taken for letter grades ### **Undergraduate Program** ### Bachelor of Science— Computer Science A minimum of 184 units is required for graduation. A complete list of requirements for the major can be found on page 46. Schedules should be planned to meet both General Education and major requirements. Students with no previous programming background should take CMPSC 8 before taking CMPSC 16. CMPSC 8 is not included in the list of preparation for the major courses but may be counted as a free elective. Students applying for major status in the BS program who have completed more than 105 units will **not** be considered for a change of major/change of college unless they can demonstrate that they will be able to complete all of the degree requirements for the proposed program without exceeding 215 units. Students may petition to enter the Computer Science major when the following requirements are met: - 1. An overall UCSB grade point average of at least 2.0, - 2. Satisfactory completion (preferably at UCSB), with a grade of B or better of CMPSC 16, 24, and 40, - 3. Satisfactory completion (preferably at UCSB) with a grade of C or better of MATH 3A, 3B, 4A, and 4B. The selection process is highly competitive and these milestones are minimum requirements for consideration, achieving them does not guarantee admission to the Computer Science major. Any petitions denied will be automatically considered a second time in the next quarter. Petitions denied a second time will not be reconsidered. More information can be found at http://cs.ucsb.edu/undergraduate/admissions/. ### Bachelor of Arts— Computer Science The College of Letters and Science offers a bachelor of arts degree in computer science, with emphases in computational biology, computational economics, and computational geography. For information about this major, refer to the College of Letters and Science section of the *UCSB General Catalog*. # Bachelor of Science—Computer Engineering This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, see page 22. # Computer Science Courses ### **LOWER DIVISION** ### 1. Seminar on the Field of Computer Science Overviews the potential of, and opportunities available from, the field of computer science. Topics include an overview of how computers work and the interesting ways in which computers can be applied to solve important and high-impact technological, social, and cutting-edge research problems. # 8. Introduction to Computer Science (4) CONRAD, FRANKLIN Not open for credit to students who have completed Computer Science
10, Computer Science 16, or Engineering 3. Legal repeat for CMPSC 5AA-ZZ. Introduction to computer program development for students with little to no programming experience. Basic programming concepts, variables and expressions, data and control structures, algorithms, debugging, program design, and documentation. # 11AA-ZZ. Programming Language Laboratory (1) FRANKLIN Different sections may be repeated. Sections not always offered. Recommended preparation: knowledge of at least one programming language. A self-paced course to allow a student who already possesses a working knowledge of at least one programming language an opportunity to learn other languages of interest. # 16. Problem Solving with Computers I (4) CONRAD, KRINTZ Prerequisite: Math 3A (may be taken concurrently) Recommended Preparation: Students with no experience with computer programming are encouraged to take Computer Science 5 or 8 before Computer Science 16. Legal repeat of CMPSC 10. Fundamental building blocks for solving problems using computers. Topics include basic computer organization and programming constructs: memory CPU, binary arithmetic, variables, expressions, statements, conditionals, iteration, functions, parameters, recursion, primitive and composite data types, and basic operating system and debugging tool. # 24. Problem Solving with Computers II (4) FRANKLIN, COSTANZO Prerequisite: Computer Science 16 with a grade of C or better; and Math 3B (may be taken concurrently). Not open for credit to students who have completed Computer Science 20. Intermediate building blocks for solving problems using computers. Topics include data structures, object-oriented design and development, algorithms for manipulating these data structures and their runtime analyses. Data structures introduced include stacks, queues, lists, trees, and sets. # 32. Object Oriented Design and Implementation (4) HOLLERER Prerequisite: Computer Science 24 with a grade of C or better. Computer Science 32 is a legal repeat for Computer Science 60. Advanced topics in object-oriented computing. Topics include encapsulation, data hiding, inheritance, polymorphism, compilation, linking and loading, memory management, and debugging; recent advances in design and development tools, practices, libraries, and operating system support. # 40. Foundations of Computer Science Prerequisites: Computer Science 16 with a grade of C or better; and Mathematics 3C. Introduction to the theoretical underpinnings of computer science. Topics include propositional predicate logic, set theory, functions and relations, counting, mathematical induction and recursion (generating functions). ### 48. Computer Science Project (4) CAPPELLO Prerequisite: Computer Science 32 with a grade of Team-based project development. Topics include software engineering and professional development practices, interface design, advanced library support; techniques for team-oriented design and development, testing and test-driven development, and software reliability and robustness. Students present and demonstrate their final projects #### 56. Advanced Applications Programming (4) CONRAD Prerequisites: Computer Science 24 with a grade of C or better. Recommended Preparation: Students are encouraged to complete Computer Science 32 prior to enrolling in Computer Science 56. Not open for credit to students who have completed Computer Science 20 Advanced application programming using a highlevel, virtual-machine-based language. Topics include generic programming, exception handling, programming language implementation; automatic memory management, and application development, management, and maintenance tools; event handling, concurrency and threading, and advanced library use. ### 64. Computer Organization and Logic Design (4) ZHENG, FRANKLIN Prerequisite: Computer Science 16 with a grade of C or better; and Mathematics 4A. Not open for credit to students who have completed ECE 15 or ECE 15B or Computer Science 30. Repeat Comments: Course counts as a legal repeat of CMPSC 30. Assembly language programming and advanced computer organization; Digital logic design topics including gates, combinational circuits, flip-flops, and the design and analysis of sequential ### 95AA-ZZ. Undergraduate Seminar in Computer Science Prerequisites: Open to pre-computer science and pre-computer engineering majors only; consent of instructor. Seminars on introductory topics in computer science. These seminars provide an overview of the history, technology, applications, and impact in various areas of computer science, including: A. Foundations, B. Software Systems, C. Programming languages and software engineering, D. Information management, E. Architecture, F. Networking, G. Security, H. Scientific computing, I. Intelligent and interactive systems, J. History, N. General. ### 99. Independent Studies in Computer Science (1-4) STAFF Must have a minimum 3.0 grade point average. May be repeated. Students are limited to 5 units per quarter and 30 units total in all 99/198/199 courses Independent studies in computer science for advanced students. ### **UPPER DIVISION** # 111. Introduction to Computational Science Prerequisites: Mathematics 6A; and, Computer Science 24 with a grade of C or better. Not open for credit to students who have completed Computer Science 110A. Introduction to computational science, emphasizing basic numerical algorithms and the informed use of mathematical software. Matrix computation, systems of linear and nonlinear equations, interpolation and zero finding, differential equations, numerical integration. Students learn and use the Matlab language. #### 130A. Data Structures and Algorithms I (4) GONZALEZ Prerequisites: Computer Science 40 and Computer Science 32 with a grade of C or better; PSTAT 120A or ECE 139: open to computer science, computer engineering, and electrical engineering majors only. The study of data structures and their applications. Correctness proofs and techniques for the design of correct programs. Internal and external searching. Hashing and height balanced trees. Analysis of sorting algorithms. Memory management. Graph traversal techniques and their applications. ### 130B. Data Structures and Algorithms II (4) GONZALEZ, SURI Prerequisite: Computer Science 130A. Design and analysis of computer algorithms. Correctness proofs and solution of recurrence relations. Design techniques; divide and conquer, greedy strategies, dynamic programming, branch and bound, backtracking, and local search Applications of techniques to problems from several disciplines. NP - completeness. # 138. Automata and Formal Languages (4) EGECIOGLU Prerequisite: Computer Science 40 with a grade of C or better; open to computer science and computer engineering majors only. Not open for credit to students who have completed Computer Science 136. Formal languages; finite automata and regular expressions; properties of regular languages; pushdown automata and context-free grammars; properties of context-free languages; introduction to computability and unsolvability. Introduction to Turing machines and computational complexity. # 140. Parallel Scientific Computing Prerequisites: Mathematics 5B; Computer Science Not open for credit to students who have completed Computer Science 110B. Fundamentals of high performance computing and parallel algorithm design for numerical computation. Topics include parallel architecture and clusters, parallel programming with message passing libraries and threads, program parallelization methodologies, parallel performance evaluation and optimization, parallel numerical algorithms and applications with different performance trade-offs. ### 153A. Hardware/Software Interface (4) KRINTZ, BREWER Prerequisite: Upper-division standing in computer science, computer engineering, or electrical engineering. Same course as ECE 153A. Issues in interfacing computing systems and software to practical I/O interfaces. Rapid response, real-time events and management of tasks, threads, and scheduling required for efficient design of embedded software and systems is discussed. Techniques for highly constrained systems. # 154. Computer Architecture (4) SHERWOOD, CHONG Prerequisite: ECE 152A. Not open for credit to students who have received credit for ECE 154, ECE 154A, or ECE 154B. Introduction to the architecture of computer systems. Topics include: central processing units, memory systems, channels and controllers, peripheral devices, interrupt systems, software versus hardware trade-offs. ### 160. Translation of Programming Languages (4) SHERWOOD Prerequisites: Computer Science 64; Computer Science 130A; and Computer Science 138; open to computer science and computer engineering majors Study of the structure of compilers. Topics include: lexical analysis; syntax analysis including LL and LR parsers; type checking; run-time environments; intermediate code generation; and compiler-construction tools # **162. Programming Languages** (4) HARDEKOPF, KRINTZ Prerequisite: Computer Science 130A and Computer Science 138; open to computer science and computer engineering majors only. Concepts of programming languages: scopes, parameter passing, storage management; control flow, exception handling; encapsulation and modularization mechanism; reusability through genericity and inheritance; type systems; programming paradigms (imperative, objectoriented, functional, and others). Emerging programming languages and their development infrastructures ### 165A. Artificial Intelligence Prerequisite: Computer Science 130A Introduction to the field of artificial intelligence, which seeks to understand and build intelligent computational systems. Topics include intelligent agents, problem solving and heuristic search, knowledge representation and reasoning, uncertainty, probabilistic reasoning, and applications of Al. ### 165B. Machine Learning (4) SINGH Prerequisite: Computer Science 130A. Covers the most important
techniques of machine learning (ML) and includes discussions of: wellposed learning problems; artificial neural networks; concept learning and general to specific ordering; decision tree learning; genetic algorithms; Bayesian learning; analytical learning; and others. ### 167. Introduction to Bioinformatics Prerequisite: Computer Science 130B. Not open to students who have completed Computer Science 190N Review of the fundamentals of molecular biology and genetics; pairwise sequence alignment: dynamic programming, database searching; multiple sequence alignment; microarray data analysis; protein structure alignment; phylogeny construction: distance and character based methods; other current topics ### 170. Operating Systems (4) KRUEGEL, ZHAO Prerequisite: Computer Science 130A; and, Computer Science 154 or ECE 154 (may be taken concurrently); open to computer science, computer engineering or electrical engineering majors only. Basic concepts of operating systems. The notion of a process; interprocess communication and synchronization; input-output, file systems, memory management. ### 171. Distributed Systems Prerequisite: Computer Science 170. Not open for credit to students who have completed ECE 151. Distributed systems architecture, distributed programming, network of computers, message passing, remote procedure calls, group communication, naming and membership problems, asynchrony, logical time, consistency, fault-tolerance, and recovery. ### 174A. Fundamentals of Database Systems (4) SU Prerequisite: Computer Science 130A Recommended Preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 174A Database system architectures, relational data model, relational algebra, relational calculus, SQL, QBE, query processing, integrity constraints (key constraints, referential integrity), database design, ER and object-oriented data model, functional dependencies, lossless join and dependency preserving decompositions, Boyce-Codd and Third Normal Forms. # 174B. Design and Implementation Techniques of Database Systems (4) SU, YAN Prerequisite: Computer Science 130B. Recommended Preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 174B Queries and processing, optimizer, cost models, execution plans, rewriting rules, access methods, spatial indexing, transactions, ACID properties, concurrency control, serializability, two-phase locking, timestamping, logging, checkpointing, transaction abort and commit, crash recovery; distributed databases. # 176A. Introduction to Computer Communication Networks (4) ALMEROTH, BELDING Prerequisites: PSTAT 120A or ECE 139; open to computer science, computer engineering, and electrical engineering majors only. Not open for credit to students who have completed Computer Science 176 or ECE 155 or ECE 155A. Recommended preparation: PSTAT 120B. Basic concepts in networking, the OSI model, error detection codes, flow control, routing, medium access control, and high-speed networks. # 176B. Network Computing (4) ZHAO, VIGNA Prerequisite: Computer Science 176A. Not open for credit to students who have completed ECE 155B or 194W. Focus on networking and web technologies used in the Internet. The class covers socket programming and web-based techniques that are used to build distributed applications. # 176C. Advanced Topics in Internet Computing (4) BELDING, ZHENG Prerequisite: Computer Science 176B. General overview of wireless and mobile networking, multimedia, security multicast, quality of service, IPv6, and web caching. During the second half of the course, one or more of the above topics are studied in greater detail. # 177. Computer Security (4) KEMMERER Prerequisite: Computer Science 170 (may be taken concurrently). Introduction to the basics of computer security and privacy. Analysis of technical difficulties of producing secure computer information systems that provide guaranteed controlled sharing. Examination and critique of current systems, methods, certification. # 178. Introduction to Cryptography (4) EGECIOGLU Prerequisites: Computer Science 24 and Computer Science 40 with a grade of C or better; and PSTAT 120A or 121A or ECE 139 or permission of instructor. An introduction to the basic concepts and techniques of cryptography and cryptanalysis. Topics include: The Shannon Theory, classical systems, the Enigma machine, the data encryption standard, public key systems, digital signatures, file security. ### 180. Computer Graphics Prerequisite: Computer Science 130B or consent of instructor Overview of OpenGL graphics standard, OpenGL state machine, other 3D graphics libraries, 3D graphics pipeline, 3D transformations and clipping, color model, shading model, shadow algorithms, texturing, curves and curved surfaces, graphics hardware, interaction devices and techniques. # 181B. Introduction to Computer Vision (4) WANG, TURK Prerequisite: Upper-division standing. Same course as ECE 181B. Overview of computer vision problems and techniques for analyzing the content images and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems. ### 182. Multimedia Computing (4) ALMEROTH, ZHENG Not open for credit to students who have completed ECE 160. Introduction to multimedia and applications. Topics include streaming media, conferencing, webcasting, digital libraries, multimedia system architectures, standards (including JPEG and MPEG), and multimedia storage and retrieval. A key emphasis is on using the Internet for delivery of multimedia data. # 185. Human-Computer Interaction (4) HOLLERER Prerequisite: Upper-division standing in computer science, computer engineering, or electrical engineering majors. Recommended preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 185. Proficiency in the Java/C++ programming language, some experience with user interface programming. The study of human-computer interaction enables system architects to design useful, efficient, and enjoyable computer interfaces. This course teaches the theory, design guidelines, programming practices, and evaluation procedures behind effective human interaction with computers. # 186. Theory of Computation (4) IBARRA Prerequisite: Computer Science 138; open to computer science majors only. Not open for credit to students who have completed Mathematics 150A. Turing machines; computability and unsolvability; computational complexity; intractability and NP-completeness. # 189A. Senior Computer Systems Project (4) BULTAN Prerequisite: senior standing in Computer Engineering, Electrical Engineering, or Computer Science; consent of instructor. Not open for credit to students who have completed Computer Science 172 or ECE 189A. Student groups design a significant computerbased project. Multiple groups may cooperate toward one large project. Each group works independently; interaction among groups is via interface specifications and informal meetings. Project for follow-up course may be different. # 189B. Senior Computer Systems Project (4) BULTAN Prerequisite: CMPSC 172 or CMPSC 189A; Senior standing in computer engineering, computer science, or electrical engineering; consent of instructor. Not open for credit to students who have completed ECE 189A or ECE 189B. Student groups design a significant computerbased project. Multiple groups may cooperate toward one large project. Each group works independently; interaction among groups is via interface specifications and informal meetings. Project for course may be different from that in first course. # 190AA-ZZ. Special Topics in Computer Science (4) STAFF Prerequisite: consent of instructor. May be repeated with consent of the department chair. Courses provide for the study of topics of current interest in computer science: A. Foundations; B. Software Systems; C. Programming languages and software engineering; D. Information management; E. Architecture; F. Networking; G. Security; H. Scientific computing; I. Intelligent and interactive systems; N. General ## 192. Projects in Computer Science (4) STAFF Prerequisite: consent of instructor. Students must have a minimum 3.0 GPA. May be repeated to a maximum of 8 units with consent of the department chair but only 4 units may be applied to the major. Projects in computer science for advanced undergraduate students. # 193. Internship in Industry (1-4) STAFF Prerequisites: consent of instructor and department chair. Not more than 4 units per quarter; may not be used as a field elective and may not be applied to science electives. May be repeated with faculty/chair approval to a maximum of 4 units. Special projects for selected students. Offered in conjunction with selected industrial and research firms under direct faculty supervision. Prior departmental approval required. Written proposal and final report required. ### 196. Undergraduate Research Prerequisites: upper-division standing, consent of the instructor. Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. No more than 4 units may be applied to departmental electives. Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research. # 199. Independent Studies in Computer Science (1-4) STAFF Prerequisites: upper-division standing; must have completed at least two upper-division courses in computer science. Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated with consent of chair. Students are limited to 5 units per quarter and 30 units total in
all 198/199 courses combined. Independent study in computer science for advanced students. ### **GRADUATE COURSES** Graduate courses for this major can be found in the *UCSB General Catalog*. # Electrical & Computer Engineering Department of Electrical and Computer Engineering, Building 380, Room 101; Telephone (805) 893-2269 or (805) 893-3821 Web site: www.ece.ucsb.edu Chair: Jerry Gibson Vice Chairs: Joao Hespanha B.S. Manjunath ### Faculty Rod C. Alferness, Ph.D., University of Michigan, Professor and Dean (integrated optoelectronics, optical switching technology and switched optical networks) Kaustav Banerjee, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration) **Daniel J. Blumenthal**, Ph.D., University of Colorado at Boulder, Professor (fiber-optic networks, wavelength and subcarrier division multiplexing, photonic packet switching, signal processing in semiconductor optical devices, wavelength conversion, microwave photonics) John E. Bowers, Ph.D., Stanford University, Professor (high-speed photonic and electronic devices and integrated circuits, fiber optic communication, semiconductors, laser physics and mode-locking phenomena, compound semiconductor materials and processing) Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis) Katie A. Byl, Ph.D., Massachusetts Institute of Technology, Assistant Professor (robotics, autonomous systems, dynamics, control, manipulation, locomotion, machine learning) Shivkumar Chandrasekaran, Ph.D., Yale University, Professor (numerical analysis, numerical linear algebra, scientific computation) **Kwang-Ting (Tim) Cheng**, Ph.D., UC Berkeley, Professor (design automation, VLSI testing, design synthesis, design verification, algorithms) Larry A. Coldren, Ph.D., Stanford University, Kavli Professor in Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optoelectronics, vertical-cavity lasers, widely-tunable lasers, optical fiber communication, growth and planar processing techniques) *1 Nadir Dagli, Ph.D., Massachusetts Institute of Technology, Professor (design, fabrication, and modeling of photonic integrated circuits, ultrafast electrooptic modulators, solid state microwave and millimeter wave devices; experimental study of ballistic transport in quantum confined structures) Steven P. DenBaars, Ph.D., University of Southern California, Professor (metalorganic vapor phase epitaxy, optoelectronic materials, compound semiconductors, indium phosphide and gallium nitride, photonic devices) *1 Jerry Gibson, Ph.D., Southern Methodist University, Professor (digital signal processing, data, speech, image and video compression, and communications via multiuse networks, data embedding, adaptive filtering) Joao Hespanha, Ph.D., Yale University, Professor (hybrid and switched systems, supervisory control, control of computer networks, probabilistic games, the use of vision in feedback control) **Ronald Iltis**, Ph.D., UC San Diego, Professor (digital spread spectrum communications, spectral estimation and adaptive filtering) Herbert Kroemer, Dr. rer. nat., University of Göttingen, Donald W. Whittier Professor in Electrical Engineering, 2000 Physics Nobel Laureate (general solid-state and device physics, heterostructures, molecular beam epitaxy, compound semiconductor materials and devices, superconductivity) *1 **Hua Lee**, Ph.D., UC Santa Barbara, Professor (image system optimization, high-performance image formation algorithms, synthetic-aperture radar and sonar systems, acoustic microscopy, microwave nondestructive evaluation, dynamic vision systems) Michael Liebling, Ph.D., École Polytechnique Fédérale de Lausanne, Assistant Professor (image processing, optical microscopy, In Vivo biological imaging) **Upamanyu Madhow**, Ph.D., University of Illinois, Professor (spread-spectrum and multiple-access communications, space-time coding, and internet protocols) **B.S. Manjunath**, Ph.D., University of Southern California, Professor (image processing, computer vision, pattern recognition, neural networks, learning algorithms, content based search in multimedia databases) Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Professor (design automation, computeraided design, integrated circuit layout, logic synthesis) P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal specification and verification, distributed systems, communication networks and protocols, asynchronous systems) **Umesh Mishra**, Ph.D., Cornell University, Professor (high-speed transistors, semiconductor device physics, quantum electronics, wide band gap materials and devices, design and fabrication of millimeterwave devices, *in situ* processing and integration techniques) **Louise E. Moser**, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation) Christopher J. Palmstrom, Ph.D., Leeds University, Professor (atomic level control of interfacial phenomena, in-situ STM, surface and thin film analysis, metallization of semiconductors, dissimilar materials epitaxial growth, molecular beam and chemical beam epitaxial growth of metallic compounds) *1 **Behrooz Parhami**, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing) Lawrence Rabiner, Ph.D., Massachusetts Institute of Technology, Professor (digital signal processing: intelligent human-machine interaction, digital signal processing, speech processing and recognition; telecommunications) **Volkan Rodoplu**, Ph.D., Stanford University, Associate Professor (wireless networks, energy-efficient and device-adaptive communications) Mark J.W. Rodwell, Ph.D., Stanford University, Professor, Director of Compound Semiconductor Research Laboratories, Director of National Nanofabrication Users Network (heterojunction bipolar transistors, high frequency integrated circuit design, electronics beyond 100 GHz) Kenneth Rose, Ph.D., California Institute of Technology, Professor, Co-Director of Center for Information Processing Research (information theory, source and channel coding, image coding, communications, pattern recognition) **Jon A. Schuller**, Ph.D., Stanford University, Assistant Professor (nanophotonics, organic optoelectronics, plasmonics, metamaterials) **John J. Shynk**, Ph.D., Stanford University, Professor (adaptive filtering, array processing, wireless communications, blind equalization, neural networks) **Dmitri B. Strukov**, Ph.D., Stony Brook University, Assistant Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing) Andrew Teel, Ph.D., UC Berkeley, Professor (control design and analysis for nonlinear dynamical systems, input-output methods, actuator nonlinearities, applications to aerospace problems) Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Associate Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication) **Li C. Wang**, Ph.D., University of Texas, Austin, Professor (design verification, testing, computer-aided design of microprocessors) **Pochi Yeh**, Ph.D., California Institute of Technology, Professor (phase conjugation, nonlinear optics, dynamic holography, optical computing, optical interconnection, neural networks, and image processing) Robert York, Ph.D., Cornell University, Professor (high-power/high-frequency devices and circuits, quasi-optics, antennas, electromagnetic theory, nonlinear circuits and dynamics, microwave photonics) Patrick Yue, Ph.D., Stanford University, Professor (high-speed CMOS IC design, cellbased RF CAD methodology and integrated biomedical sensors) ### **Emeriti Faculty** **Steven E. Butner**, Ph.D., Stanford University, Professor (computer architecture, VLSI design of CMOS and gallium-arsenide ICs with emphasis on distributed organizations and fault-tolerant structures) **Jorge R. Fontana**, Ph.D., Stanford University, Professor Emeritus (quantum electronics, particularly lasers, interaction with charged particles) Allen Gersho, Ph.D., Cornell University, Professor Emeritus, Director of Center for Information Processing Research (speech, audio, image, and video compression, quantization and signal compression techniques, and speech processing) **Arthur C. Gossard**, Ph.D., UC Berkeley, Professor Emeritus, (epitaxial crystal growth, artificially structured materials, semiconductor structures for optical and electronic devices, quantum confinement structures) *1 **Glenn R. Heidbreder**, D. Eng., Yale University, Professor Emeritus (communication theory, signal processing in radar and digital communication systems; digital image processing) **Evelyn Hu**, Ph.D., Columbia University, Professor Emeritus, (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interface studies, superconductivity) *1 Petar V. Kokotovic, Ph.D., USSR Academy of Sciences, Professor Emeritus, Director of Center for Control Engineering and Computation, Director of Center for Robust Nonlinear Control of Aeroengines (sensitivity analysis, singular perturbations, large-scale systems, non-linear systems, adaptive control, automotive and jet engine control) **Stephen I. Long**, Ph.D., Cornell University, Professor Emeritus, (semiconductor devices and integrated circuits for high speed digital and RF analog applications) **George L. Matthaei**, Ph.D.,
Stanford University, Professor Emeritus (circuit design techniques for passive and active microwave, millimeter-wave and optical integrated circuits, circuit problems of high-speed digital integrated circuits) James L. Merz, Ph.D., Harvard University, Professor Emeritus (optical properties of semiconductors, including guided-wave and integrated optical devices, semiconductor lasers, optoelectronic devices, native defects in semiconductors, low-dimensional quantum structures) *1 **Sanjit K. Mitra**, Ph.D., UC Berkeley, Professor Emeritus, (digital signal and image processing, computer-aided design and optimization) Venkatesh Narayanamurti, Ph.D., Cornell University, Professor Emeritus (transport, semiconductor heterostructures, nanostructures, scanning tunneling microscopy and ballistic electron emission microscopy, phonon physics) Pierre M. Petroff, Ph.D., UC Berkeley, Professor (self assembling nanostructures in semiconductors and ferromagnetic materials, spectroscopy of nanostructures, nanostructure devices, semiconductor device reliability) *1 lan B. Rhodes, Ph.D., Stanford University, Professor Emeritus (mathematical system theory and its applications with emphasis on stochastic control, communication, and optimization problems, especially those involving decentralized information structures or parallel computational structures) John G. Skalnik, D. Eng., Yale University, Professor Emeritus (solar cells, general device technology, effects of non-ideal structures) **Roger C. Wood**, Ph.D., UC Los Angeles, Professor Emeritus (computer system modeling, design, and analysis, computer architecture, and instructional use of computers) *2 - *1 Joint appointment with Materials - *2 Joint appointment with Computer Science ### **Affiliated Faculty** David Awschalom, Ph.D. (Physics) Elizabeth Belding, Ph.D. (Computer Science) Francesco Bullo, Ph.D. (Mechanical Engr.) Frederick Chong, Ph.D. (Computer Science) **Francis Doyle**, Ph.D., (Chemical Engineering) Chandra Krintz, Ph.D. (Computer Science) **Eric McFarland**, Ph.D., (Chemical Engineering) Shuji Nakamura, Ph.D. (Materials) **Bradley E. Paden**, Ph.D. (Mechanical Engineering) Tim Sherwood, Ph.D. (Computer Science) **Hyongsok Tom Soh**, Ph.D. (Mechanical Engineering) Electrical and Computer Engineering is a broad field encompassing many diverse areas such as computers and digital systems, control, communications, computer engineering, electronics, signal processing, electromagnetics, electro-optics, physics and fabrication of electronic and photonic devices. As in most areas of engineering, knowledge of mathematics and the natural sciences is combined with engineering fundamentals and applied to the theory, design, analysis, and implementation of devices and systems for the benefit of society. The Department of Electrical and Computer Engineering offers programs leading to the degrees of bachelor of science in electrical engineering or bachelor of science in computer engineering. (Please see the "Computer Engineering" section for further information.) The undergraduate curriculum in electrical engineering is designed to provide students with a solid background in mathematics, physical sciences, and traditional electrical engineering topics as presented above. A wide range of program options, including computer engineering; microwaves; communications, control, and signal processing; and semiconductor devices and applications, is offered. The department's Electrical Engineering undergraduate program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet. org. It is one of the degrees recognized in all fifty states as leading to eligibility for registration as a professional engineer. The undergraduate major in Electrical Engineering prepares students for a wide range of positions in business, government, and private industrial research, development, and manufacturing organizations. Students who complete a major in electrical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education. Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Students who plan to change to a major in the department should consult the ECE student office. Departmental faculty advisors are assigned to students to assist them in choosing senior elective courses. Counseling is provided to graduate students through the ECE graduate advisor. Individual faculty members are also available for help in academic planning. ### **Mission Statement** The Department of Electrical and Computer Engineering seeks to provide a comprehensive, rigorous and accredited educational program for the graduates of California's high schools and for postgraduate students, both domestic and international. The department has a dual mission: - Education: We will develop and produce excellent electrical and computer engineers who will support the high-tech economy of California and the nation. This mission requires that we offer a balanced and timely education that includes not only strength in the fundamental principles but also experience with the practical skills that are needed to contribute to the complex technological infrastructure of our society. This approach will enable each of our graduates to continue learning throughout an extended career. - Research: We will develop relevant and innovative science and technology through our research that addresses the needs of industry, government and the scientific community. This technology can be transferred through our graduates, through industrial affiliations, and through publications and presentations. We provide a faculty that is committed to education and research, is accessible to students, and is highly qualified in their areas of expertise. ### **Educational Objectives** The educational objectives of the Electrical Engineering Program identify what we hope that our graduates will accomplish within a few years after graduation. - We expect our graduates to make positive contributions to society in fields including, but not limited to, engineering. - 2. We expect our graduates to have acquired the ability to be flexible and adaptable, showing that their educa- tional background has given them the foundation needed to remain effective, take on new responsibilities and assume leadership roles. 3. We expect some of our graduates to pursue their formal education further, including graduate study for master's and doctoral degrees. ### Program Outcomes The EE program expects our students upon graduation to have: - 1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and electrical engineering that are required to support specialized professional training at the advanced level and to provide necessary breadth to the student's overall program of studies. This provides the basis for lifelong learning. - 2. Experienced in-depth training in stateof-the-art specialty areas in electrical engineering. This is implemented through our senior electives. Students are required to take two sequences of at least two courses each at the senior - 3. Benefited from imaginative and highly supportive laboratory experiences where appropriate throughout the program. The laboratory experience will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students should experience both hardwareoriented and simulation-oriented exercises. - Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired in several courses. These may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and conduct experiments as well as analyze the results. - Learned to function well in teams. Also, students must develop communication skills, written and oral, both through team and classroom experiences. Skills including written reports, webpage preparation, and public presentations are required. - Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This provides for the ability to understand the impact of engineering solutions in a global and societal context. A course in engineering ethics is also required of all undergraduates. ### Undergraduate Program ### **Bachelor of Science—Electrical** Engineering A minimum of 194 units is required for graduation. A complete list of requirements for the major can be found on page 48. Schedules should be planned to meet both General Education and major require- The department academic advisor can suggest a recommended study plan for electrical engineering freshmen and sophomores. Each student is assigned a departmental faculty advisor who must be consulted in planning the junior and senior year programs. The required 32 units (8 courses) of departmental electives are taken primarily in the senior year, and they permit students to develop depth in specialty areas of their choice. A student's elective course program must be approved by a departmental faculty advisor. The advisor will check the program to ensure satisfaction of the departmental requirements. A wide variety of elective programs will be considered acceptable. Three matters should be noted: (1) students who fail to attain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major, (2) a large majority of electrical and computer engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite courses means receiving a grade of C- or better in prerequisite courses except for Mathematics 3A-B-C and Mathematics 5A and 5B which require a grade of C
or better to apply these courses as prerequisites, (3) courses required for the pre-major or major, inside or outside of the Department of Electrical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades. ### **Bachelor of Science—Computer** Engineering This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, see page 22. # Electrical & Computer Engineering Courses Many of the ECE courses are restricted to ECE majors only. Instructor and quarter offered are subject to change. ### **LOWER DIVISION** ### 1. Ten Puzzling Problems in Computer Engineering (1) PARHAMI Prerequisite: open to pre-computer engineering only. Seminar, 1 hour. Gaining familiarity with, and motivation to study, the field of computer engineering, through puzzlelike problems that represent a range of challenges facing computer engineers in their daily problemsolving efforts and at the frontiers of research. # 2A. Circuits, Devices, and Systems Prerequisites: Mathematics 3A-B, and Mathematics 3C or 4A with a minimum grade of C; and, Mathematics 5A with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open to electrical engineering, computer engineering, and precomputer engineering majors only. Lecture, 3 hours; laboratory, 4 hours. Introduction to basic circuit analysis. KCL, KVL, nodal analysis, superposition, independent and dependent sources; diodes and I-V characteristics; basic op-amp circuits; first-order transient analysis; AC analysis and phasors. Introduction to the use of test instruments #### 2B. Circuits, Devices, and Systems (5) YORK Prerequisites: ECE 2A with a grade of C- or better; open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours. Second order circuits. Laplace transform and solution of steady state and transient circuit problems in the s-domain; Bode plots; Fourier series and transforms; filters. Transistor as a switch; load lines; simple logic gates; latches and flip-flops. ### 2C. Circuits, Devices, and Systems Prerequisites: ECE 2B with a grade of C- or better (may be taken concurrently); open to electrical engineering, computer engineering, and precomputer engineering majors only. Lecture, 3 hours; laboratory, 4 hours Two-port network parameters; small-signal models of nonlinear devices; transistor amplifier circuits; frequency response of amplifiers; non-ideal op-amps; modulation, bandwidth, signals; Fourier analysis #### 4. Design Project for Freshmen (4) STAFF Prerequisites: Mathematics 3A-B and Mathematics 3C or 4A and Physics 1 with minimum grades of C; Engineering 3 with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours. This first course on design gives an intuitive introduction to engineering design. Learn how to take an idea of a system and convert it to a working model. Use hardware and software for building a # 15A. Fundamentals of Logic Design Prerequisites: ECE 2A with a minimum grade of C-; open to electrical engineering, computer engineering, and pre-computer engineering majors Not open for credit to students who have completed ECE 15. Lecture, 3 hours; discussion, 1 hour. Boolean algebra, logic of propositions, minterm and maxterm expansions, Karnaugh maps, Quine-McCluskey methods, melti-level circuits, combinational circuit design and simulation, multiplexers, decoders, programmable logic devices. #### 94AA-ZZ. Group Studies in Electrical and Computer Engineering (1-4) STAFF Prerequisite: consent of instructor. Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum. ### **UPPER DIVISION** ### 121A. The Practice of Science (3) HU, AWSCHALOM Prerequisite: Consent of instructor. Same course as Physics 121A. Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course. ### 121B. The Practice of Science ### (4) HU, AWSCHALOM Prerequisite: ECE 121A or Physics 121A; consent of instructor. Same course as Physics 121B. Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course. # 123. High-Performance Digital Circuit Design (4) THEOGARAJAN Prerequisite: ECE 2A-B-C with a minimum grade of C- in each of those courses; open to both electrical engineering and computer engineering majors only. Introduction to high-performance digital circuit design techniques. Basics of device physics including deep submicron effects; device sizing and logical effort; Circuit design styles; clocking & timing issues; memory & datapath design; Low-power design; VLSI design flows and associated EDA tools ### 124A. VLSI Principles (4) BANERJEE Prerequisites: ECE 132 (may be taken concurrently) and ECE 152A with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 3 hours. Introduction to CMOS digital VLSI design: CMOS devices and manufacturing technology; transistor level design of static and dynamic logic gates and components and interconnections; circuit characterization: delay, noise margins, and power dissipation; combinational and sequential circuits; arithmetic operations and memories. # 124B. Integrated Circuit Design and Fabrication (4) BOWERS Prerequisite: ECE 132 with a minimum grade of C-. Lecture, 4 hours; laboratory, 3 hours. Theory, fabrication, and characterization of solid state devices including P-N junctions, capacitors, bipolar and MOS devices. Devices are fabricated using modern VLSI processing techniques including lithography, oxidation, diffusion, and evaporation. Physics and performance of processing steps are discussed and analyzed. # 124C. Integrated Circuit Design and Fabrication (4) ROWERS Prerequisites: ECE 124B and ECE 137A with a minimum grade of C- in all. Lecture, 4 hours; laboratory, 3 hours. Design, simulation, fabrication, and characterization of NMOS integrated circuits. Circuit design and layout is performed using commercial layout software. Circuits are fabricated using modern VLSI processing techniques. Circuit and discrete device electrical performance are analyzed. # 124D. VLSI Architecture and Design (4) BREWER Prerequisite: ECE 124A with a minimum grade of C-. Lecture, 3 hours; laboratory, 2 hours. Practical issues in VLSI circuit design, pad/ pin limitations, clocking and interfacing standards, electrical packaging for high-speed and highperformance design. On-chip noise and crosstalk, clock and power distribution, architectural and circuit design constraints, interconnection limits and transmission line effects. # 125. High Speed Digital Integrated Circuit Design (4) BANERJEE Prerequisite: ECE 124A or 137A with a minimum grade of C- in either. Lecture, 4 hours. Advanced digital VLSI design: CMOS scaling, nanoscale issues including variability, thermal management, interconnects, reliability; non-clocked, clocked and self-timed logic gates; clocked storage elements; high-speed components, PLLs and DLLs; clock and power distribution; memory systems; signaling and I/O design; low-power design. # 130A. Signal Analysis and Processing (4) MADHOW Prerequisites: Mathematics 5A and ECE 2B with a minimum grade of C- in both; open to EE and computer engineering majors only. Lecture, 3 hours; discussion, 2 hours. Analysis of continuous time linear systems in the time and frequency domains. Superposition and convolution. Bilateral and unilateral Laplace transforms. Fourier series and Fourier transforms. Filtering, modulation, and feedback. # 130B. Signal Analysis and Processing (4) CHANDRASEKARAN Prerequisite: ECE 130A with a grade of C- or better; open to EE and computer engineering majors only. Lecture, 3 hours; discussion, 2 hours. Analysis of discrete time linear systems in the time and frequency domains. Z transforms, Discrete Fourier transforms. Sampling and aliasing. ### 130C. Signal Analysis and Processing (4) CHANDRASEKARAN Prerequisites: ECE 130A-B with a minimum grade of C- in both. Lecture, 3 hours; discussion, 2 hours. Basic techniques for the analysis of linear models in electrical engineering: Gaussian elimination, vector spaces and linear equations, orthogonality, determinants, eigenvalues and eigenvectors, systems of linear differential equations, positive definite matrices, singular value decomposition. # 132. Introduction to Solid State Electronic Devices (4) MISHRA Prerequisites: Physics 4 or 24 with a minimum grade of C-; Mathematics 5A with a minimum grade of C; and ECE 2A-B (may be taken concurrently) with a minimum grade of C- in both; open to EE and computer engineering majors only. Lecture, 3 hours; discussion, 2 hours. Electrons and holes in semiconductors; doping (P and N); state occupation statistics, transport properties of electrons and holes; P-N junction diodes; I-V, C-V, and switching properties of P-N junctions; introduction of bipolar transitors, MOSFET's and JFET's. # 134. Introduction to Fields and Waves (4) DAGLI, YORK Prerequisites: Physics 3 or 23 with a minimum grade of C-; and Mathematics 5A-B with a minimum grade of C; and Mathematics 5C with a minimum grade of C-; open to EE and computer engineering majors only. Lecture, 3 hours; discussion, 2 hours. Introduction to applied electromagnetics and wave phenomena in high frequency electron circuits and systems. Wave on transmission-lines, elements of electrostatics and magnetostatics and applications, plane waves, examples and applications to RF, microwave, and optical systems. # 135.
Optical Fiber Communication (4) DAGLI Prerequisites: ECE 132 and 134 with a minimum grade of C- in both. Lecture, 3 hours; discussion, 1 hour. Optical fiber as a transmission medium, dispersion and nonlinear effects in fiber transmission, fiber and semiconductor optical amplifiers and lasers, optical modulators, photo detectors, optical receivers, wavelength division multiplexing components, optical filters, basic transmission system analysis and design. # 137A. Circuits and Electronics I (4) RODWELL Prerequisites: ECE 2A-B-C, 130A, and 132 with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours. Analysis and design of single stage and multistage transistor circuits including biasing, gain, impedances and maximum signal levels. # 137B. Circuits and Electronics II (4) RODWELL Prerequisites: ECE 2C and 137A with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours. Analysis and design of single stage and multistage transistor circuits at low and high frequencies. Transient response. Analysis and design of feedback circuits. Stability criteria. # 139. Probability and Statistics (4) ILTIS (4) ILTIS Prerequisite: Open to Electrical Engineering, Computer Engineering and pre-Computer Engineering majors only. Lecture, 3 hours; discussion, 2 hours. Fundamentals of probability, conditional probability, Bayes rule, random variables, functions of random variables, expectation and high-order moments, Markov chains, hypothesis testing. ### 141A. Introduction To Nanoelectromechanical and Microelectromechanical Systems(NEMS/MEMS) (3) PENNATUR, TURNER Prerequisites: ME 16 & 17, ME 152A, ME 151A (may be concurrent); or, ECE 130A and 137A with a minimum grade of C- in both. Same course as ME 141A. Lecture, 3 hours. Introduction to nano- and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluidics will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples. # 141B. MEMS: Processing and Device Characterization (4) PENNATHUR, TURNER Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A. Same course as ME 141B. Lecture, 2 hours; laboratory, 6 hours. Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS emphasis on current MEMS devices including accelerometers, comb drives, microreactors and capacitor-actuators. # 141C. Introduction to Microfluidics and BioMEMS (3) MEINHART Prerequisite: ME 141A or ECE 141A; open to ME and EE majors only. Same course as ME 141C. Lecture, 3 hours. Introduces physical phenomena associated with microscale/nanoscale fluid mechanics, microfluids, and bioMEMS. Analytical methods and numerical simulation tools are used for analysis of microfluids. # 144. Electromagnetic Fields and Waves (4) YORK Prerequisite: ECE 134 with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours. Waves on transmission lines, Maxwell's equations, skin effect, propagation and reflection of electromagnetic waves, microwave integrated circuit principles, metal and dielectric waveguides, resonant cavities, antennas. Microwave and optical device examples and experience with modern microwave and CAD software. # **145A.** Communication Electronics (5) RODWELL Prerequisites: ECE 137A-B with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 6 hours. RF/Microwave circuits. Transistor, transmissionline, and passive element characteristics. Transmission-line theory and impedance matching. Amplifier design for maximum available gain. Amplifier stability. Gain compression and power limits. Introduction to noise figure, and to intermodulation distortion. # 145B. Communication Electronics II Prerequisite: ECE 145A with a minimum grade of C-; EE majors only. Lecture, 3 hours; laboratory, 6 hours. RF models for CMOS and BJT. Discrete vs. IC implementation. On-chip passive components. LNAs. PAs. T/R switches. Mixers. VCOs. Polyphase filters Radio link budget. Analog and digital modulation schemes. Introduction to receiver architectures. I&Q modulation. Image-reject architectures. # 145C. Communication Electronics III (5) YUE Prerequisites: ECE 137B with a minimum grade of C-. Lecture, 4 hours. Modern wireless communication standards. Cellular phone. Wireless LAN. Introduction to multi- access techniques. Advanced modulation schemes. Interference and distortion. Modern transceiver architectures. Direct conversion vs. low IF vs. superheterodyne. Sub-sampling receiver. Direct polar modulator. Frequency synthesis using PLL. ### 146A. Analog Communication Theory and Techniques (5) ILTIS Prerequisites: ECE 130A-B with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 6 hours. Modulation theory, AM, FM, PM, and analog pulse modulation and demodulation techniques. System noise and performance calculations. ### 146B. Digital Communication Theory and Techniques (5) SHYNK Prerequisites: ECE 130A-B, 140 and 146A with minimum grades of C-, open to EE majors only. Lecture, 3 hours; laboratory, 6 hours. Elements of source coding: quantization, pulse code modulation, delta modulation. Introduction to digital modulation over baseband and passband channels: linear modulation, Nyquist criterion for intersymbol interference avoidance, orthogonal modulation. Optimal reception of signals in Additive White Gaussian Noise: detection theory basics, signal space concepts, geometry of maximum likelihood receivers. Performance analysis of optimal receivers: error probability as a function of Eb/N0, union bound, nearest neighbors approximation. Link design: power-bandwidth tradeoffs, link budget ### 147A. Feedback Control Systems - Theory and Design (5) TEEL, SMITH Prerequisites: ECE 130A-B-C with a minimum grade of C- in each; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours. Feedback systems design, specifications in time and frequency domains. Analysis and synthesis of closed loop systems. Computer aided analysis and ### 147B. Digital Control Systems - Theory and Design (5) SMITH, TEEL Prerequisite: ECE 147A with a minimum grade of C-; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours. Analysis of sampled data feedback systems; state space description of linear systems; observability, controllability, pole assignment, state feedback, observers. Design of digital control systems. (W) ### 147C. Control System Design Project (5) HESPANHA Prerequisite: ECE 147A or ME 155B or ME 173 with a minimum grade of C-. Lecture, 3 hours; laboratory, Students are required to design, implement, and document a significant control systems project. The project is implemented in hardware or in high-fidelity numerical simulators. Lectures and laboratories cover special topics related to the practical implementation of control systems. ### 148. Applications of Signal Analysis and **Processing** Prerequisites: ECE 130A-B with a minimum grade of C- in both. Lecture, 3 hours; discussion, 2 hours. A sequence of engineering applications of signal analysis and processing techniques; in communications, image processing, analog and digital filer design, signal detection and parameter estimation, holography and tomography, Fourier optics, and microwave and acoustic sensing ### 149. Active and Passive Network Synthesis (4) ILTIS Prerequisite: Upper-division standing; open to EE majors only Designed for juniors to take right after ECE Combines the areas of electronics and network theory in the subject of passive and active network design. Topics include passive synthesis, optimization techniques, approximations to ideal filters, distributed networks, sensitivity and the modern design techniques, and applications of active filters #### 150. Mobile Embedded Systems (4) CHENG Prerequisite: Proficiency in JAVA programming. Architectures of modern smartphones and their key hardware components including mobile application processors, communications chips, display, touchscreen, graphics, camera, battery, GPS,and various sensors; the OS and software development platform of smartphones; smartphone applications; low power design techniques. #### 151. Distributed Systems (4) MELLIAR-SMITH Prerequisite: Computer Science 170 with a minimum grade of C- Not open for credit to students who have completed Computer Science 171. Lecture, 3 hours; discussion, 1 hour. Distributed systems architecture, distributed programming techniques, message passing, remote procedure calls, group communication and membership, naming, asynchrony, causality, consistency, fault-tolerance and recovery, resource management, scheduling, monitoring, testing and debugging. ### 152A. Digital Design Principles (5) RODOPLU Prerequisites: ECE 15 or 15A or Computer Science 30 with a minimum grade of C- in each course; open to electrical engineering, computer engineering, and computer science majors only. Lecture, 3 hours; laboratory, 6 hours. Design of synchronous digital systems: timing diagrams, propagation delay, latches and flip-flops, shift registers and counters, Mealy/Moore finite state machines, Verilog, 2-phase clocking, timing analysis, CMOS implementation, S-RAM, RAM-based designs, ASM charts, state minimization. ### 152B. Digital Design Methodologies Prerequisites: ECE 152A with a minimum grade of C-; open to EE, computer engineering, and computer science majors only. Lecture, 3 hours; discussion, Design methodologies of digital systems, the register and processor levels. Design of functional subsystems, including arithmetic processors, hardwired and microprogrammed control units, memory systems, and bussing systems. System organization including communication, input/output systems, and multiple CPU systems. # 153A.
Hardware/Software Interface (4) BREWER, KRINTZ Prerequisite: Upper division standing in Computer Engineering, Computer Science or Electrical Engineering. Same course as Computer Science 153A. Issues in interfacing computing systems and software to practical I/O interfaces. Rapid response, real-time events and management of tasks, threads, and scheduling required for efficient design of embedded software and systems is discussed. Techniques for highly constrained systems # 153B. Sensor and Peripheral Interface Design Prerequisites: ECE 152B and 153A with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 3 Hardware description languages; fieldprogrammable logic and ASIC design techniques. Mixed-signal techniques: A/D and D/A converter interfaces; video and audio signal acquisition, processing and generation, communication and network interfaces. ### 154A. Introduction to Computer Architecture (4) PARHAMI Prerequisite: ECE 152A with a minimum grade of C-; open to electrical engineering and computer engineering majors only Not open for credit to students who have completed Computer Science 154. Instruction-set architecture (ISA) and computer performance; Machine instructions, assembly, addressing modes; Memory map, arrays, pointers; Procedure calls; Number formats; Simple ALUs; Data path, control, microprogram; Buses, I/O programming, interrupts; Pipelined data paths and control schemes. ### 154B. Advanced Computer Architecture (4) STRUKOV Prerequisite: ECE 154A with a minimum grade of C-; open to electrical engineering and computer engineering majors only. Not open for credit to students who have completed Computer Science 154. ISA variations; Pipeline data and control hazards; Fast ALU design; Instruction-level parallelism, multithreading, VLIW; Vector and array processing, multi/many-core chips; Cache and virtual memory; Disk arrays; Shared- and distributed-memory systems, supercomputers; Reconfigurable and application-specific circuits. ### 155A. Introduction to Computer Networks Prerequisite: ECE 154 with a minimum grade of C-; and, Computer Science 12 or 60 with a minimum Not open for credit to students who have completed Computer Science 176 or 176A, or ECE 155. Lecture, 3 hours; discussion, 1 hour. Topics in this course include network architectures, protocols, wired and wireless networks, transmission media, multiplexing, switching, framing, error detection and correction. flow control, routing, congestion control, TCP/IP, DNS, email, World Wide Web, network security, socket programming in C/C++. ### 155B. Network Computing (4) MOSER Prerequisites: ECE 155A with a minimum grade of C-; and, Computer Science 5JA or 10 or 11JA with a minimum grade of C-. Not open for credit to students who have completed Computer Science 176B or ECE 194W. Lecture, 3 hours; discussion, 1 hour. Topics in this course include client/server computing, threads, Java applets, Java sockets, Java RMI, Java servlets, Java Server Pages, Java Database Connectivity, Enterprise Java Beans, Hypertext Markup Language, extensible Markup Language, Web Services, programming networked applications in Java. ### 156A. Digital Design with VHDL and Synthesis (4) WANG Prerequisite: ECE 152A with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours. Introduction to VHDL basic elements, VHDL simulation concepts. VHDL concurrent statements with examples and applications. VHDL subprograms, packages, libraries and design units. Writing VHDL for synthesis. Writing VHDL for finite state machines. Design case study #### 156B. Computer-Aided Design of VLSI Circuits (4) WANG Prerequisite: ECE 156A with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours. Introduction to computer-aided simulation and synthesis tools for VLSI. VLSI system design flow, role of CAD tools, layout synthesis, circuit simulation, logic simulation, logic synthesis, behavior synthesis and test synthesis. ### 158. Digital Signal Processing (4) MITRA Prerequisites: ECE 130A-B with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours. Discrete signals and systems, convolution, z-transforms, discrete Fourier transforms, digital filters. ## 160. Multimedia Systems (4) MELLIAR-SMITH Prerequisites: upper-division standing: open to EE, computer engineering, computer science, and creative studies majors only. Lecture, 3 hours; laboratory, 3 hours. Introduction to multimedia and applications, including WWW, image/video databases and video streaming. Covers media content analysis, media data organization and indexing (image/ video databases), and media data distribution and interaction (video-on-demand and interactive TV). # 162A. The Quantum Description of Electronic Materials (4) BOWERS Prerequisites: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and materials majors only , Same course as Materials 162A. Lecture, 4 hours Electrons as particles and waves, Schrodinger's equation and illustrative solutions. Tunnelling. Atomic structure, the exclusion principle and the periodic table. Bonds. Free electrons in metals, periodic potentials and energy bands. #### 162B. Fundamentals of the Solid State (4) COLDREN Prerequisite: ECE 162A with a minimum grade of C-; open to EE and materials majors only. Same course as Materials 162B. Lecture, 3 hours; discussion, 1 hour. Crystal lattices and the structure of solids, with emphasis on semiconductors. Lattice vibrations, electronic states and energy bands. Electrical and thermal conduction. Dielectric and optical properties. Semiconductor devices: diffusion, p-n junctions and diode behavior. #### 162C. Optoelectronic Materials and Devices (4) COLDREN Prerequisites: ECE 162A-B with a minimum grade of C-; open to electrical engineering and materials majors only. Lecture, 3 hours; discussion, 1 hour. Optical transitions in solids. Direct and indirect gap semiconductors. Luminescence. Excitons and photons. Fundamentals of optoelectronic devices: semiconductor lasers, Led's photoconductors, solar cells, photo diodes, modulators. Photoemission. Integrated circuits. ### 178. Introduction to Digital Image and Video Processing (4) MANJUNATH Prerequisites: open to EE, computer engineering, and computer science majors with upper-division standing. Lecture, 3 hours; discussion, 1 hour. Basic concepts in image and video processing. Topics include image formation and sampling, image transforms, image enhancement, and image and video compression including JPEG and MPEG coding standards. ### 179D. Introduction to Robotics: Dynamics and Control (4) BYL Prerequisites: ECE 130A or ME 155A (may be taken concurrently). Same course as ME 179D. Dynamic modeling and control methods for robotic systems. LaGrangian method for deriving equations of motion, introduction to the Jacobian, and modeling and control of forces and contact dynamics at a robotic end effector. Laboratories encourage a problem-solving approach to control. ### 179P. Introduction to Robotics: Planning and **Kinematics** (4) BULLO Prerequisites: ENGR 3; and either ME 17 or ECE 130C (may be taken concurrently). Not open for credit to student who have completed Mechanical Engineering 170A or ECE 181A. Same course as ME 179P. Motion planning and kinematics topics with an emphasis on geometric reasoning, programming, and matrix computations. Motion planning: configuration spaces, sensor-based planning, decomposition and sampling methods, and advanced planning algorithms. Kinematics: reference frames, rotations and displacements, kinematic motion models. ### 181B. Introduction to Computer Vision Prerequisite: Upper-division standing. Same course as Computer Science 181B. Overview of computer vision problems and techniques for analyzing the content of images and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems. ### 183. Nonlinear Phenomena Prerequisites: Physics 105A or ME 163 or upperdivision standing in EE. Same course as Physics 106 and ME 169. Not open for credit to students who have completed ECE . 163C. Lecture, 3 hours; discussion, 1 hour. An introduction to nonlinear phenomena. Flows and bifurcations in one and two dimensions, chaos, fractals, strange attractors. Applications to physics, engineering, chemistry, and biology. # 188A. Senior Electrical Engineering Project Prerequisites: Consent of instructor; completion of at least four required upper division Electrical Engineering courses with a 3.0 GPA or higher. Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance. ### 188B. Senior Electrical Engineering Project (4) STAFF Prerequisites: ECE 188A with a minimum grade of Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance. #### 189A. Senior Computer Systems Project (4) BUTNER Prerequisite: ECE 152B; senior standing in Computer Engineering, Computer Science or EE Not open for credit to students who have completed Computer Science 189A-B. Student groups design a significant computerbased project. Groups work independently with interaction among groups via interface specifications and informal meetings. # 189B. Senior Computer Systems Project Prerequisite: ECE 189A; senior standing in Computer Engineering, Computer Science or ECE. Not open for credit to students who have completed Computer Science 189A-B. Student groups design a significant
computerbased project. Groups work independently with interaction among groups via interface specifications and informal meetings ### 192. Projects in Electrical and Computer Engineering (4) STAFF Prerequisite: consent of instructor. Discussion, 2 hours; laboratory, 6 hours. Projects in electrical and computer engineering for advanced undergraduate students. #### 193. Internship in Industry (1-8) STAFF Prerequisite: consent of department. Must have a 3.0 grade-point-average. May not be used as departmental electives. May be repeated to a maximum of 12 units. Field, 1-8 hours. Special projects for selected students. Offered in conjunction with engineering practice in selected industrial and research firms, under direct faculty supervision. ### 194AA-ZZ. Special Topics in Electrical and Computer Engineering (1-5) STAFF Prerequisite: consent of instructor. Variable hours. Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum. Topics covered include (check with department for quarters offered): A. Circuits; AA. Micro-Electro-Mechanical Systems; B. Systems Theory; BB. Computer Engineering; C. Communication Systems; D. Control Systems; E. Signal Processing; F. Solid State; G. Fields and Waves; H. Quantum Electronics; I. Microwave Electronics; J. Switching Theory; K. Digital Systems Design; L. Computer Architecture; M. Computer Graphics; N. Pattern Recognition; O. Microprocessors and Microprocessor-based Systems; P. Simulation; Q. Imaging Systems and Image Processing; R. General; S. Speech; T. Robot Control; U. Optoelectronics; V. Scientific Computation; W. Computer Network; X. Distributed Computation; Y. Numerical Differential Equations; Z. Nanotechnology ### 196. Undergraduate Research Prerequisites: upper-division standing; consent of instructor. Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. Not more than 4 units may be applied to departmental electives. Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on # 199. Independent Studies in Electrical and Computer Engineering (1-5) STAFF Prerequisites: upper division standing; completion of two upper-division courses in electrical and computer engineering; consent of instructor. Must have a minimum 3.0 grade-point average for the preceding three quarters. Students are limited to five units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. Directed individual study, normally experimental. ### **GRADUATE COURSES** Graduate courses for this major can be found in the UCSB General Catalog. # Engineering Sciences Engineering Sciences, Office of Associate Dean for Undergraduate Studies, Harold Frank Hall, Room 1006; Telephone (805) 893-2809 Web site: http://engrsci.ucsb.edu Chair & Associate Dean: Glenn E. Beltz Director of Technology Management Program: Robert A. York ### Faculty Glenn E. Beltz, Ph.D., Harvard, Professor John E. Bowers*, Ph.D., Stanford University, Professor **Gary S. Hansen***, Ph.D., University of Michigan, Associate Professor **Jeffrey M. Moehlis**, Ph.D., University of California, Berkeley, Associate Professor **Linda R. Petzold**, Ph.D., University of Illinois at Urbana-Champaign, Professor **David Seibold***, Ph.D., Michigan State University, Professor Robert A. York*, Ph.D., Cornell University, Professor * Technology Management Program faculty The Engineering Sciences program at UCSB serves as a focal point for the cross-disciplinary educational environment that prevails in each of our five degreegranting undergraduate programs (chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering). The courses offered in this "department" are designed hemical CASEB cerins to cultivate well-educated, innovative engineers and scientists with excellent management and entrepreneurial skills and attitudes oriented to new technologies. One of the missions of the Engineering Sciences program is to provide coursework commonly needed across other educational programs in the College of Engineering. For example, courses in computer programming, computation, ethics, engineering writing, engineering economics, science communication to the public, and even an aeronautics-inspired art course are offered. # Engineering Sciences Courses ### **LOWER DIVISION** # 3. Introduction to Programming for Engineers (3) STAFF Prerequisites: Open to chemical engineering, electrical engineering, and mechanical engineering majors only. General philosophy of programming for engineering majors. Students will be introduced to a modern programming language or software package. Specific areas of study will include algorithms, basic decision structures, arrays, matrices, and graphing. Engineering applications will be emphasized. (F, S, M). ### 99. Introduction to Research (1-3) STAFF Prerequisite: Consent of instructor. May be repeated for credit to a maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199AA-ZZ courses combined. Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group. ### **UPPER DIVISION** # 101. Ethics in Engineering (3) STAFF Prerequisite: senior standing in engineering. The nature of moral value, normative judgment, and moral reasoning. Theories of moral value. The engineer's role in society. Ethics in professional practice. Safety, risk, responsibility. Morality and career choice. Code of ethics. Case studies will facilitate the comprehension of the concepts introduced. (W,S,M) #### 102AA-ZZ. Special Topics in Engineering, Business, and Society (1) STAFF Prerequisites: Upper-division standing. May be repeated for credit if there is no duplication of course content. A series of weekly lectures given by university staff and outside experts in all fields of new technology management. # 103. Advanced Engineering Writing Prerequisites: Writing 50 or 50E; upper-division standing. Practice in the forms of communication—contractual reports, proposals, conference papers, oral presentations, business plans—that engineers and entrepreneurial engineers will encounter in professional careers. Focus is on research methods, developing a clear and persuasive writing style, and electronic document preparation. # 111. Opportunities and Perspectives in Technology, Business, and Society Prerequisite: Writing 2 with a minimum grade of B; and Writing 50 or equivalent with a minimum grade of B. Writing 50 or equivalent in the prerequisites is intended to include: ENGL 10, WRIT 50, WRIT 105, WRIT 107 & WRIT 109 This course replaces the ENGR 102A-B-C series. Lecture series where entrepreneurial, technological, business, and governmental leaders share their lessons of experience and discuss current business issues. For anyone interested in entrepreneurship, management, technology development, and commercialization and the impact that innovation has on society. # 120. Business Strategy & Leadership Skills (4) HANSEN Prerequisite: Writing 2 with a minimum grade of B-; and, Writing 50 or equivalent with a minimum grade of B-; and upper division standing. Introduction to critical business principles and practices required by leaders for business success and societal benefit. Students will be exposed to key management theories, models and tools in strategy, finance, accounting, commercialization, marketing, and sales. ### 122. Entrepreneurship (4) STAFF Prerequisite: Writing 2 with a minimum grade of Band Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-. Learn how to start any type of venture; for profit, non-profit, service, sole-proprietorship, with a focus on high-tech ventures. Analysis of new business opportunities, development of customer-centric value propositions, financing, marketing, selling, and protection of intellectual property. ### 124. Entrepreneurial Marketing 2) STAFF Prerequisite: Writing 2 with a minimum grade of Band Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, and upper division standing. Introduction to basic marketing concepts and how these concepts can be applied to any organization, particularly technology firms. Additionally, they will be introduced to how management of the marketing function within an organization is critical to the organization's success. (F, W, S) ### 126. New Venture Finance (2) STAFF Prerequisite: Economics 1 or Economics 3A with a minimum grade of B-. Presents the tools necessary for the strategic analysis and understanding of financial information particular to new ventures. Provides insight into how financial information can be used to design optimal financing strategies, prepare valuation models for new ventures, and assist in strategic planning for the venture ### 130. Managing Operations (3) STAFF Prerequisite: Upper Division standing Provides students with tools to manage projects and operations to ensure projects are completed on time, within budget, and with high quality, by exploring specific techniques for accomplishing these goals. Prepares students to manage people, budgets, scheduling, and quality of projects. # 131. Introductions to Patents and Intellectual Property (3) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Provides emerging inventors, entrepreneurs, and scientists with a working knowledge of intellectual property (patents, copyrights, trademarks, and trade secrets), with the main focus being on patents. Will cover the basic functions of patents, structure of patents, and patent
prosecution. # 132. Business Planning for New Ventures (4) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-. Analysis and creation of a business plan for a new business venture including demand forecasting, financial modeling, selling of the new business idea, and other issues for current business conditions. #### 134. Selling High Tech Products (3) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Learn the art of persuasion and selling. Theory and applications of the basic tenets of persuasion and how such scientifically supported techniques can be deployed to positively impact the sales process. # 135. New Product Development (4) BOWERS Prerequisite: Upper Division standing. New product development requires technical and non-technical business persons to work across disciplines. Instruction is provided in a wide range of topics concerning customer driven product innovation. Students learn new product development processes, tools, techniques, and organizational skills. #### 140. The Business of Healthcare: How Innovation and Entrepreneurship will Alter the Future Delivery of Medical Goods and Services (3) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Review of hospitals, physician offices, insurance companies, and medical suppliers that make up the health care universe, history and evolution of the business models by which they deliver goods and services and how they profit from the existing healthcare system. #### 141. The Early Stage of Life Science Company: The Challenges faced by Entrepreneurs in Creating and Growing New Businesses Based on Human Biology Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Using the biotechnology industry as a prototype, course explores what makes life science-based businesses different from other enterprises, and the special risks (and opportunities) faced by these businesses both in the earliest stages and in maintaining long-term growth. ## 145. Entrepreneurial Opportunities in IT and Telecom (3) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Provides a high-level view of key analysis and management skills needed in today's competitive Telecom and IT business environments via readings, guest lectures, class discussions, case studies and a long term team project. # 146. Critical Issues in Early Stage IT and Telecom Companies (3) STAFF Prerequisite: Writing 2 with a minimum grade of B-; and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-; and upper division standing. Enables motivated business, technologyoriented student to gain a clearer understanding of management issues such as leadership, culture, planning and control, and growth management in today's competitive Telecom and IT business environments. ### 160. Science for the Public (1-4) STAFF Prerequisite: consent of instructor. Same course as Physics 160K. Open to graduate students in science and engineering disciplines and to undergraduate science and engineering majors. Provides experience in communicating science and technology to nonspecialists. The major components of the course are field work in mentoring, a biweekly seminar, presentations to precollege students and to adult nonscientists, and end-of-term research papers. # 177. Art and Science of Aerospace Culture (4) STAFF Prerequisites: upper-division standing; consent of instructor. Same course as Art Studio 177. Interdisciplinary course/seminar/practice for artists, academics, engineers, and designers interested in exploring the technological aesthetic, cultural, and political aspects of the space side of the aerospace complex. Design history, space complex aesthetics, cinema intersections, imaging/telecommunications, human spaceflight history, reduced/alternating gravity experimentation, space systems design/utilization. ## 190AA-ZZ. Special Topics in Engineering (4) STAFF Prerequisite: Upper-division standing. May be repeated for credit if there is no duplication of course content. Courses provide for the study of topics of current interest in the areas of entrepreneurship, business, engineering management, and other related areas. A. Business strategies, B. Entrepreneurship, C. Product development, D. General. # 191AA-ZZ. Professional Seminar in New Technology Management Prerequisite: Upper-division standing. May be repeated for credit if there is no duplication of course content. Courses provide for the study of topics of current interest in the areas of entrepreneurship, business, engineering management, ethics, social, political, and other issues related to the successful practice of engineering. ## 199. Independent Studies in Engineering Prerequisite: Upper-division standing; consent of instructor. Students must have a minimum 3.0 GPA for the preceding three quarters. May be repeated for credit to a maximum of 10 units. Directed individual study. ### **GRADUATE COURSES** A graduate course listing can be found in the UCSB General Catalog. # **Materials** Department of Materials Engineering II, Room 1355; Telephone (805) 893-4362 Web site: www.materials.ucsb.edu Chair: Tresa M. Pollock Vice Chair: Francis W. Zok ### **Faculty** **Guillermo C. Bazan**, Ph.D., Massachusetts Institute of Technology, Professor (polymer synthesis, photophysics) *5 **John Bowers**, Ph.D., Stanford, Professor (energy efficiency, optical devices and networks, silicon photonics) *1 **Michael Chabinyc**, Ph.D., Stanford University, Associate Professor (organic semiconductors, thin film electronics, energy conversion using photovoltaics, characterization of thin films of polymers, x-ray scattering from polymers) Larry A. Coldren, Ph.D., Stanford University, Kavli Professor in Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optics, optoelectronics, molecular beam epitaxy, microfabrication) *1 Steven P. DenBaars, Ph.D., University of Southern California, Professor (metalorganic chemical vapor deposition (MOCVD) of semiconductors, IR to blue lasers and LEDs, high power electronic materials and devices) *1 **Craig Hawker**, Ph.D., University of Cambridge, Professor, Director of Materials Research Laboratory (synthetic polymer chemistry, nanotechnology, materials science) *5 Alan J. Heeger, Ph.D., UC Berkeley, Professor, Director of Institute for Polymers and Organic Solids, 2000 Chemistry Nobel Laureate (condensed-matter physics, conducting polymers) *4 Jacob N. Israelachvili, Ph.D., University of Cambridge, Professor (adhesion, friction surface forces, colloids, biosurface interactions) *3 Edward J. Kramer, Ph.D., Carnegie Mellon University, Professor (fracture and diffusion in polymers; polymer surfaces, interfaces, and thin films) *3 Herbert Kroemer, Dr. Rer. Nat., University of Göttingen, Donald W. Whittier Professor of Electrical Engineering, 2000 Physics Nobel Laureate (device physics, molecular beam epitaxy, heterojunctions, compound semiconductors) *1 Carlos G. Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (materials processing, and microstructure evolution, coatings, composites, functional inorganics) *2 Robert M. McMeeking, Ph.D., Brown University, Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics, process modeling) *2 Shuji Nakamura, Ph.D., University of Tokushima, Cree Professor of Solid State Lighting and Displays (gallium nitride, blue lasers, white LEDs, solid state illumination, bulk GaN substrates) G. Robert Odette, Ph.D., Massachusetts Institute of Technology, Professor (fundamental deformation and fracture, materials in extreme environments, structural reliability, and high-performance composites) *2 Chris Palmstrom. Ph.D., University of Leeds. Professor (atomic level control of interfacial phenomena, in-situ STM, surface and thin film analysis, metallization of semiconductors. dissimilar materials epitaxial growth, molecular beam and chemical beam epitaxial growth of metallic compounds) *1 Philip A. Pincus, Ph.D., UC Berkeley, Professor (theoretical aspects of selfassembled biomolecular structures, membranes, polymers, and colloids) *4 Tresa M. Pollock, Ph.D., Massachusetts Institute of Technology, Professor (mechanical and environmental performance of materials in extreme environments, unique high temperature materials processing paths, ultrafast laser-material interactions, allow design and 3-D materials characterization) Cyrus R. Safinya, Ph.D., Massachusetts Institute of Technology, Professor (biophysics, supramolecular assemblies of biological molecules, non-viral gene delivery systems) Omar A. Saleh, Ph.D., Princeton University, Assistant Professor (single-molecule biophysics, motor proteins, DNA-protein interactions) Ram Seshadri. Ph.D.. Indian Institute of Science, Professor (inorganic materials, preparation and magnetism of bulk solids and nonoparticles, patterned materials) Hyongsok (Tom) Soh, Ph.D., Stanford, Associate Professor (directed evolution of biological molecules, supramolecular assemblies, integrated biosensors) *2 James S. Speck, Sc.D., Massachusetts Institute of Technology, Professor (nitride semiconductors, III-V semiconductors, ferroelectric and high-K films, microstructural evolution, extended defects, transmission electron microscopy, x-ray diffraction) Susanne Stemmer, Ph.D.,
University of Stuttgart, Professor (functional oxide thin films, structure-property relationships, scanning transmission electron microscopy and spectroscopy) Galen Stucky, Ph.D., Iowa State University, Professor (biomaterials, composites, materials synthesis, electro-optical materials catalysis)*5 Chris Van de Walle, Ph.D., Stanford University, Professor (novel electronic materials, wide-band-gap semiconductors, oxides) Claude Weisbuch, Ph.D., Universite Paris VII, Ecole Polytechnique-Palaiseau, Professor (semiconductor physics: fundamental and applied optical studies of quantized electronic structures and photonic-controlled structures; electron spin resonance in semiconductors, optical semiconductor microcavities, photonic bandgap materials) Francis W. Zok, Ph.D., McMaster University, Professor (mechanical and thermal properties of materials and structures) #### **Emeriti Faculty** Anthony K. Cheetham, Ph.D., Oxford University, Professor Emeritus (catalysis, optical materials, X-ray, neutron diffraction) *5 David R. Clarke, Ph.D., University of Cambridge, Professor Emeritus (electrical ceramics, thermal barrier coatings, piezospectroscopy, mechanics of microelectronics) *2 Arthur C. Gossard. Ph.D., UC Berkelev. Professor Emeritus (epitaxial growth, artificially synthesized semiconductor microstructures, semiconductor devices) *1 Evelyn Hu, Ph.D., Columbia University, Professor Emeritus (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interface studies, superconductivity) *1 Noel C. MacDonald, Ph.D., UC Berkeley, Kavli Professor in MEMS Technology (microelectromechanical systems, applied physics, nano-fabrication, electron optics, materials, mechanics, surface analysis) *2 Frederick F. Milstein, Ph.D., UC Los Angeles, Professor Emeritus (crystal mechanics, bonding, defects, mechanical properties) *2 Pierre M. Petroff, Ph.D., UC Berkeley, Professor (semiconductor interfaces. defects physics, epitaxy of self assembled quantum structures, quantum dots and nanomagnets, spectroscopy of semiconductor nanostructures) *1 Fred Wudl, Ph.D., UC Los Angeles, Professor (optical and electro-optical properties of conjugated polymers, organic chemistry of fullerenes, and design and preparation of selfmending polymers) - *1 Joint appointment with Electrical & Computer Engineering - *2 Joint appointment with Mechanical Engineering - *3 Joint appointment with Chemical Engineering - *4 Joint appointment with Physics - *5 Joint appointment with Chemistry & Biochemistry ### Affiliated Faculty David Auston, Ph.D. (Electrical and Computer Engineering) Glenn H. Fredrickson, Ph.D. (Chemical Engineering) Mahn Won Kim, Ph.D. (Physics) Gary Leal, Ph.D. (Chemical Engineering) Gene Lucas, Ph.D. (Chemical Engineering) The Department of Materials was conceptualized and built under two basic guidelines: to educate graduate students in advanced materials and to introduce them to novel ways of doing research in a collaborative, multidisciplinary environment. Advancing materials technology today—either by creating new materials or improving the properties of existing ones—requires a synthesis of expertise from the classic materials fields of metallurgy, ceramics, and polymer science, and such fundamental disciplines as applied mechanics, chemistry, biology, and solid-state physics. Since no individual has the necessary breadth and depth of knowledge in all these areas, solving advanced materials problems demands the integrated efforts of scientists and engineers with different backgrounds and skills in a research team. The department has effectively transferred the research team concept, which is the operating mode of the high technology industry, into an academic environment. The department has major research groups working on a wide range of advanced inorganic and organic materials, including advanced structural alloys, ceramics and polymers; high performance composites; thermal barrier coatings and engineered surfaces; organic, inorganic and hybrid semiconductor and photonic material systems; catalysts and porous materials, magnetic, ferroelectric and multiferroic materials; biomaterials and biosurfaces, including biomedically relevant systems; colloids, gels and other complex fluids; lasers, LEDs and optoelectronic devices; packaging systems; microscale engineered systems, including MEMS. The groups are typically multidisciplinary involving faculty, postdoctoral researchers and graduate students working on the synthesis and processing, structural characterization, property evaluation, microstructure-property relationships and mathematical models relating micromechanisms to macroscopic # Materials Courses #### **UPPER DIVISION** #### 100A. Structure and Properties I (3) SESHADRI, SPALDIN Prerequisites: Chemistry 1A-B; Physics 4; and, Mathematics 5A-B-C. Lecture, 3 hours. An introduction to materials in modern technology. The internal structure of materials and its underlying principles: bonding, spatial organization of atoms and molecules, structural defects. Electrical, magnetic and optical properties of materials, and their relationship with structure. #### 100B. Structure and Properties II (3) STEMMER, ZOK Prerequisite: Materials 100A. Not open for credit to students who have completed Materials 101. Lecture, 3 hours. Mechanical properties of engineering materials and their relationship to bonding and structure. Elastic, flow, and fracture behavior; time dependent deformation and failure. Stiffening, strengthening, and toughening mechanisms. Piezoelectricity, magnetostriction and thermo-mechanical interactions in materials. #### 100C. Fundamentals of Structural Evolution (3) LEVI, ODETTE, ZOK Prerequisites: Materials 100A or FCF 132: and Materials 100B or Chemical Engineering 185 or ME 180. Lecture, 3 hours. An introduction to the thermodynamic and kinetic principles governing structural evolution in materials. Phase equilibria, diffusion and structural transformations. Metastable structures in materials. Self-assembling systems. Structural control through processing and/or imposed fields. Environmental effects on structure and properties ### 101. Introduction to the Structure and **Properties of Materials** Prerequisite: upper-division standing. Not open for credit to students who have completed Materials 100B. Students interested in following the BS Engineering/MS Materials program should not take this course. Introduction to the structure of engineering materials and its relationship with their mechanical properties. Structure of solids and defects. Concepts of microstructure and origins. Elastic, plastic flow and fracture properties. Mechanisms of deformation and failure. Stiffening, strengthening, and toughening mechanisms. # 135. Biophysics and Biomolecular Materials (3) SAFINYA Prerequisites: Physics 5 or 6C or 25. Same course as Physics 135. Structure and function of cellular molecules (lipids, nucleic acids, proteins, and carbohydrates). Genetic engineering techniques of molecular biology. Biomolecular materials and biomedical applications (e.g., bio-sensors, drug delivery systems, gene carrier systems). # 160. Introduction to Polymer Science (3) KRAMER Prerequisite: Chemistry 109A-B. Same course as Chemical Engineering 160. Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions. # 162A. The Quantum Description of Electronic Materials (4) STAFF Prerequisites: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and materials majors only. Same course as ECE 162A. Electrons as particles and waves, Schrodinger's equation and illustrative solutions. Tunneling. Atomic structure, the Exclusion Principle and the periodic table. Bonds. Free electrons in metals. Periodic potentials and energy bands. (F) ## 162B. Fundamentals of the Solid State (4) COLDREN. PETROFF Prerequisites: ECE 162A with a minimum grade of C-; open to EE and materials majors only. Same course as ECE 162B. Crystal lattices and the structure of solids, with emphasis on semiconductors. Lattice vibrations, electronic states and energy bands. Electrical and thermal conduction. Dielectric and optical properties. Semiconductor devices: Diffusion, P-N junctions and diode behavior. # 185. Materials in Engineering (3) LEVI, ODETTE Prerequisite: Materials 100B or 101. Same course as ME 185. Lecture, 3 hours. Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of metals, ceramics, polymers, and composites more relevant to structural applications. The relationship of properties to structure and processing is emphasized in every case # 186. Manufacturing and Materials Or 101. Or 101. Or 101. Same course as ME 186. Lecture, 3 hours. Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed. # 188. Topics in Materials (2) VANDEWALLE Topics in Materials for renewable energy-efficient applications: Thermoelectrics, Solid State Lighting, Solar Cells, High Temperature coatings for turbines and engines. (W) ### **GRADUATE COURSES** Graduate courses for this major can be found in the *UCSB General Catalog*. # Mechanical Engineering Department of Mechanical Engineering, Engineering II, Room 2355; Telephone (805) 893-2430 Web site: www.me.ucsb.edu Chair: Kimberly Turner Vice Chair: Jeffrey M. Moehlis ### **Faculty** **Bassam Bamieh**, Ph.D., Rice University, Professor (control systems design with
applications to fluid flow problems) Matthew R. Begley, Ph.D., University of California, Santa Barbara, Professor (mechanics of materials with applications to multilayered devices such as microfluidics, MEMS and protective coatings) **Glenn E. Beltz**, Ph.D., Harvard, Professor (solid mechanics, materials, aeronautics, engineering education) **Ted D. Bennett**, Ph.D., UC Berkeley, Associate Professor (thermal science, laser processing) **David Bothman**, B.S., UC San Diego, Lecturer Francesco Bullo, Ph.D., California Institute of Technology, Professor (motion planning and coordination, control systems, distributed and adaptive algorithms) Otger Campas, Ph.D., Curie Institute (Paris) and University of Barcelona, Assistant Professor (physical biology, systems biology, quantitative biology, morphogenesis and selforganization of living matter) Frederic Gibou, Ph.D., University of California, Los Angeles, Professor (computational science and engineering) *2 **Gary S. Hansen**, Ph.D., University of Michigan, Associate Professor (technology management program) **Keith T. Kedward**, Ph.D., University of Wales, Professor (design of composite systems) **Mustafa Khammash**, Ph.D., Rice University, Professor (robust analysis and synthesis of control systems and controls in biological systems) Rouslan Krechetnikov, Ph.D., Moscow Institute of Physics & Technology, Assistant Professor (fluid mechanics, complex fluid interfaces, analytical mechanics, dynamical systems, stability theory, applied mathematics) **Stephen Laguette**, M.S., University of California, Los Angeles, Lecturer (biomedical engineering design) Carlos Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (conceptual design, synthesis and evolution in service of structural and inorganic materials, especially for high temperature applications) *3 **Gene Lucas**, Ph.D., Massachusetts Institute of Technology, Professor (mechanical properties of structural materials, environmental effects, structural reliability) *1 **Eric F. Matthys**, Ph.D., California Institute of Technology, Professor (heat transfer, fluid mechanics, rheology) Robert M. McMeeking, Ph.D., Brown University, Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics) *3 **Eckart Meiburg**, Ph.D., University of Karlsruhe, Professor (computational fluid dynamics, fluid mechanics) **Carl D. Meinhart**, Ph.D., University of Illinois at Urbana-Champaign, Professor (wall turbulence, microfluidics, flows in complex geometries) **Igor Mezic**, Ph.D., California Institute of Technology, Professor (applied mechanics, non-linear dynamics, fluid mechanics, applied mathematics) Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Associate Professor (nonlinear dynamics, fluid mechanics, biological dynamics, applied mathematics) **G. Robert Odette**, Ph.D., Massachusetts Institute of Technology, Professor (deformation and fracture, high performance materials for use in severe environments) *3 **Bradley E. Paden**, Ph.D., UC Berkeley, Professor (control theory, kinematics, robotics) Sumita Pennathur, Ph.D., Stanford University, Associate Professor (application of microfabrication techniques and micro/ nanoscale flow phenomena) Linda R. Petzold, Ph.D., University of Illinois at Urbana–Champaign, Professor, Director of Computational Science and Engineering Graduate Emphasis (computational science and engineering; systems biology) *2 **Hyongsok Tom Soh**, Ph.D., Stanford University, Associate Professor (microelectromechanical systems, integrated biosensors, multi-functional biomaterials) Theofanis G. Theofanous, Ph.D., University of Minnesota, Professor, Director of Center for Risk Studies and Safety (nuclear and chemical plant safety, multiphase flow, thermal hydraulics) *1 Kimberly L. Turner, Ph.D., Cornell University, Professor (microelectromechanical systems, dynamics, solid mechanics, measurement and characterization of microsystems motion and device parameters) **Megan Valentine**, Ph.D., Harvard University, Assistant Professor (single-molecule biophysics, cell mechanics, motor proteins, biomaterials) **Henry T. Yang**, Ph.D., Cornell University, Professor (aerospace structures, structural dynamics and stability, transonic flutter and aeroelasticity, intelligent manufacturing systems) ### **Emeriti Faculty** John C. Bruch, Jr., Ph.D., Stanford University, Professor Emeritus (applied mathematics, numerical solutions and analysis) **David R. Clarke**, Ph.D., University of Cambridge, Professor (electrical ceramics, thermal barrier coatings, piezospectroscopy, mechanics of microelectronics) *3 Roy S. Hickman, Ph.D., UC Berkeley, Professor Emeritus (fluid mechanics, physical gas dynamics, computer-aided design) George Homsy, Ph.D., University of Illinois, Professor Emeritus (hydrodynamic stability, thermal convection, thin film hydrodynamics. flow in microgeometries and in porous media, polymer fluid mechanics) Frederick A. Leckie, Ph.D., Stanford University, Professor Emeritus (mechanics of materials, engineering design) Wilbert J. Lick, Ph.D., Rensselaer Polytechnic Institute, Professor Emeritus (oceanography and limnology, applied mathematics) Noel C. MacDonald, Ph.D., UC Berkeley, Kavli Professor in MEMS Technology (microelectromechanical systems, applied physics, materials, mechanics, nanofabrication) *3 Ekkehard P. Marschall, Dr. Ing., Technische Hochschule Hannover, Professor Emeritus (thermodynamics, heat and mass transfer, desalination, energy conversion, experimental techniques) Stephen R. McLean, Ph.D., University of Washington, Professor Emeritus (fluid mechanics, physical oceanography, sediment Frederick Milstein, Ph.D., UC Los Angeles, Professor Emeritus (mechanical properties of materials) *3 Thomas P. Mitchell, Ph.D., California Institute of Technology, Professor Emeritus (theoretical and applied mechanics) Marshall Tulin, M.S., Massachusetts Institute of Technology, Professor Emeritus, Ocean Engineering Laboratory Director (hydrodynamics, aerodynamics, turbulence, cavitation phenomena, drag reduction in turbulent flows) Walter W. Yuen, Ph.D., UC Berkeley, Professor (thermal science, radiation heat transfer, heat transfer with phase change, combustion) - *1 Joint appointment with Chemical Engineering - *2 Joint appointment with Computer Science - *3 Joint appointment with Materials ### Affiliated Faculty Paul J. Atzberger (Mathematics) Katie A. Byl (Electrical and Computer Engineering) Patricia Holden (Bren School of Environmental Science and Management) Arturo Keller (Bren School of Environmental Science and Management) L. Gary Leal (Chemical Engineering The undergraduate program in mechanical engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. We offer a balanced curriculum of theory and application, involving: preparation in basic science, math, computing and writing; a comprehensive set of engineering science and laboratory courses; and a series of engineering design courses starting in the freshman year and concluding with a three course sequence in the senior year. Our students gain hands-on expertise with state-of-the art tools of computational design, analysis, and manufacturing that are increasingly used in industry, government, and academic institutions. In addition, the Department has a 15-unit elective program that allows students to gain depth in specific areas of interest, while maintaining appropriate breadth in the basic stem areas of the discipline. All students participate in a widely recognized design project program which includes projects sponsored by industry, UCSB researchers, as well as intercollegiate design competitions. The project program has been expanded to emphasize entrepreneurial product-oriented projects. #### **Mission Statement** We offer an education that prepares our students to become leaders of the engineering profession and one which empowers them to engage in a lifetime of learning and achievement. ### **Educational Objectives for the Undergraduate Program** It is the objective of the Mechanical Engineering Program to produce graduates who: - · Successfully practice in either the traditional or the emerging technologies comprising mechanical engineering: - Are successful in a range of engineering graduate programs including those in mechanical, environmental and materials engineering; - Have a solid background in the fundamentals of engineering allowing them to pass the Fundamentals of Engineering examination; - Are active in professional societies. In order to achieve these objectives, the Department of Mechanical Engineering is engaged in a very ambitious effort to lead the discipline in new directions that will be critical to the success of 21st century technologies. While maintaining strong ties to stem areas of the discipline, we are developing completely new cross-cutting fields of science and engineering related to topics such as: microscale engineering and microelectrical-micromechanical systems; dynamics and controls and related areas of sensors, actuators and instrumentation; advanced composite materials and smart structures; computation, simulation and information science; advanced energy and transportation systems; and environmental monitoring, modeling and remediation. ### **Program Outcomes** Upon graduation, students in the mechanical engineering B.S. degree program: 1. Should possess a solid foundation in, and be able to apply the principles of, mathematics, science, and engineering to solve problems and have the ability to learn new skills relevant to his/her chosen career. - 2. Have the ability to conduct and analyze data from experiments in dynamics, fluid dynamics, thermal science and materials, and should have been exposed to experimental design in at least one of these areas. - 3. Should have experienced the use of current software in problem solving and - 4. Should demonstrate the ability to design useful products, systems, and
processes. - Should be able to work effectively on teams - 6. Should have an understanding of professional and ethical responsibilities. - 7. Should be able to write lab reports and design reports and give effective oral presentations. - 8. Should have the broad background in the humanities and the social sciences, which provides an awareness of contemporary issues and facilitates an understanding of the global and societal impact of engineering problems and solutions. - Should be members of the American Society of Mechanical Engineers. ### **Undergraduate Program** ### Bachelor of Science-Mechanical Engineering A minimum of 190 units is required for graduation. A complete list of requirements for the major can be found on page 50. Schedules should be planned to meet both General Education and major requirements. Students who are not Mechanical Engineering majors may be permitted to take lower division mechanical engineering courses, subject to meeting prerequisites and grade-point average requirements, availability of space, and consent of the instructor The mechanical engineering elective courses allow students to acquire more in-depth knowledge in one of several areas of specialization, such as those related to: the environment; design and manufacturing; thermal and fluid sciences; structures, mechanics, and materials; and dynamics and controls. A student's specific elective course selection is subject to the approval of the department advisor. Courses required for the pre-major or major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades. ### **Research Opportunities** Upper-division undergraduates have opportunities to work in a research environment with faculty members who are conducting current research in the various fields of mechanical engineering. Students interested in pursuing undergraduate research projects should contact individual faculty members in the department. # Mechanical Engineering Courses #### **LOWER DIVISION** #### 6. Basic Electrical and Electronic Circuits (4) STAFF Prerequisites: Physics 3-3L; Mathematics 3C or 4A; open to ME majors only. Not open for credit to students who have completed ECE 2A or 2B, or ECE 6A or 6B. Introduction to basic electrical circuits and electronics. Includes Kirchhoff's laws, phasor analysis, circuit elements, operational amplifiers, and transistor circuits. ## 10. Engineering Graphics: Sketching, CAD, and Conceptual Design (4) STAFF Prerequisite: ME majors only. Introduction to engineering graphics, CAD, and freehand sketching. Develop CAD proficiency using advanced 3-D software. Graphical presentation of design: views, sections, dimensioning, and #### 11. Introductory Concepts in Mechanical Engineering (1) BOTHMAN, FIELDS, BELTZ Prerequisite: lower-division standing. The theme question of this course is "What do mechanical engineers do?" Survey of mechanical and environmental engineering applications. Lectures by mechanical engineering faculty and practicing engineers #### 12. Manufacturing Processes (1) BOTHMAN Prerequisite: ME majors only. Processes used to convert raw material into finished objects. Overview of manufacturing processes including: casting, forging, machining, presswork, plastic and composite processing. Videos, demonstrations, and tours illustrate modern industrial practice. Selection of appropriate processes # 12S. Introduction to Machine Shop Prerequisite: ME majors only. Basic machine shop skills course. Students learn to work safely in a machine shop. Students are introduced to the use of hand tools, the lathe, the milling machine, drill press, saws, and precision measuring tools. Students apply these skills by completing a project. #### 14. Statics ### (4) BELTZ, SHUGAR, TURNER Prerequisite: Physics 1 and Mathematics 3B; open to ME majors only. Introduction to applied mechanics. Forces, moments, couples, and resultants; vector algebra; construction of free body diagrams; equilibrium in 2- and 3- dimensions; analysis of frames, machines, trusses and beams; distributed forces; friction. #### 15. Strength of Materials (4) BELTZ, KEDWARD Prerequisites: ME 14 with a minimum grade of C-; open to mechanical engineering majors only. Properties of structural materials, including Hooke's law and behavior beyond the elastic limit. Concepts of stress, strain, displacement, force, force systems, and multiaxial stress states. Design applications to engineering structures, including problems of bars in tension, compression, and torsion, beams subject to flexure, pressure vessels, # 16. Engineering Mechanics: Dynamics (4) TURNER, MEZIC, BAMIEH Prerequisites: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 5C or 6B; (may be taken concurrently); open to ME majors only. Not open for credit to students who have completed ME 163A. Vectorial kinematics of particles in space, orthogonal coordination systems. Relative and constrained motions of particles. Dynamics of particles and systems of particles, equations of motion, energy and momentum methods. Collisions. Planar kinematics and kinetics of rigid bodies. Energy and momentum methods for analyzing rigid body systems. Moving frames and relative motion. #### 17. Mathematics of Engineering (3) MOEHLIS, GIBOU Prerequisite: Engineering 3; Mathematics 5B or 6A (may be taken concurrently); open to ME majors Introduction to basic numerical and analytical methods, with implementation using MATLAB. Topics include root finding, linear algebraic equations, introduction to matrix algebra, determinants, inverses and eigenvalues, curve fitting and interpolation, and numerical differentiation and integration. (S, M) #### 95. Introduction to Mechanical Engineering (1-4) STAFF Prerequisite: consent of instructor. May be repeated for credit to a maximum of 6 Participation in projects in the laboratory or machine shop. Projects may be student- or facultyoriginated depending upon student interest and consent of faculty member. # 97. Mechanical Engineering Design Projects Prerequisite: consent of instructor. May be repeated for maximum of 12 units, variable hours. Course offers students opportunity to work on established departmental design projects. P/ NP grading, does not satisfy technical elective requirement. ### 99. Introduction to Research (1-3) STAFF Prerequisite: consent of instructor. May be repeated for maximum of 6 units, variable hours Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group. ### **UPPER DIVISION** ### 100. Professional Seminar Prerequisite: undergraduate standing. May be repeated for up to 3 units. May not be used as a departmental elective. A series of weekly lectures given by university staff and outside experts in all fields of mechanical and environmental engineering. #### 104. Mechatronics (3) BAMIEH, PADEN Prerequisites: ME 6; open to ME majors only. Interfacing of mechanical and electrical systems and mechatronics. Basic introduction to sensors, actuators, and computer interfacing and control. Transducers and measurement devices, actuators, A/D and D/A conversion, signal conditioning and filtering. Practical skills developed in weekly lab #### 105. Mechanical Engineering Laboratory (4) BENNETT, MATTHYS, VALENTINE Prerequisite: ME 151B, 152B, 163; and, Materials 101 or 100B. Introduction to fundamental engineering laboratory measurement techniques and report writing skills. Experiments from thermosciences, fluid mechanics, mechanics, materials science and environmental engineering. Introduction to modern data acquisition and analysis techniques. (S) ### 106A. Advanced Mechanical Engineering Laboratory (3) KHAMMASH, BAMIEH Prerequisite: ME 155A. An advanced lab course with experiments in dynamical systems and feedback control design. Students design, troubleshoot, and perform detailed, multi-session experiments. # 106B. Mechanics, Materials and Structures (3) ZOK Prerequisites: ME 15; ME 154; ME 156A; and Materials 100B or 101. Experiments on mechanical behavior of materials and structures. Assessment of analytical and finite element methods for mechanical design, with applications to optimization of lightweight structures. ## 106C. Advanced Thermo/Fluids Laboratory Prerequisite: ME 105 and 151A-B, ME 151C (may be concurrent) and ME 152A-B Perform thermo/fluid experiments that emphasize elements of thermodynamics, heat transfer, and fluid mechanics. This laboratory course stresses critical thinking skills required to construct and perform experiments independently, and to investigate physical phenomena experimentally. ## 110. Aerodynamics and Aeronautical Engineering (3) BELTZ, MEINHART Prerequisites: ME 14 and 152A. Concepts from aerodynamics, including lift and drag analysis for airfoils as well as aircraft sizing/ scaling issues. Structural mechanics concepts are applied to practical aircraft design. Intended for students considering a career in aeronautical engineering. # 112. Energy (3) MATTHYS, MARSCHALL Prerequisite: Senior Undergraduate or Graduate Student status in the College of Engineering; or consent of Instructor. Introduction to the field of Energetics. Topics may include energy sources and production, energy usage, renewable technologies, hardware, operating principles, environmental impact, energy reserves, national and global energy budgets, historical perspectives, economics, societal considerations, and others #### 119. Introduction to Coastal Engineering (3) STAFF Prerequisite: ME 152A. Quantitative description of waves and tides: refraction, shoaling. Nearshore circulation. Sediment characteristics and transport; equilibrium beach profile; shoreline protection. # 124. Advanced Topics in Transport Phenomena/Safety (3) THEOFANOUS Prerequisites: Chemical Engineering 120A-B-C, or ME 151A-B and ME 152A. Same course as Chemical Engineering 124. Hazard
identification and assessments, runaway reactions, emergency relief. Plant accidents and safety issues. Dispersion and consequences of ### 125AA-ZZ. Special Topics in Mechanical Engineering Prerequisite: Consent of instructor. May be repeated for credit to a maximum of 12 units provided letter designations are different. Students are advised to consult their faculty advisor before making their course selection. Individual courses each concentrating on one area in the following subjects: applied mechanics, cad/cam, controls, design, environmental engineering, fluid mechanics, materials science, mechanics of solids and structures, ocean and coastal engineering, robotics, theoretical mechanics, thermal sciences, and recent developments in mechanical engineering # 128. Design of Biomedical Devices Prerequisite: Mechanical Engineering 10, 14, 15, 16, and 153; open to ME majors only. Introductory course addresses the challenges of biomedical device design, prototyping and testing, material considerations, regulatory requirements, design control, human factors and ethics. #### 134. Advanced Thermal Science (3) MATTHYS, YUEN Prerequisite: ME 151C. This class will address advanced topics in fluid mechanics, heat transfer, and thermodynamics Topics of interest may include combustion, phase change, experimental techniques, materials processing, manufacturing, engines, HVAC, non-Newtonian fluids, etc. #### 136. Introduction to Multiphase Flows (3) THEOFANOUS Prerequisites: Chemical Engineering 120A-B-C; or, ME 151C and 152A. Same course as Chemical Engineering 136. Development from basic concepts and techniques of fluid mechanics and heat transfer, to local behavior in multiphase flows. Key multiphase phenomena, related physics. Extension of local conservation principles to usable formulations in multiphase flows. Modelling approaches. Practical examples. ## 140A. Numerical Analysis in Engineering (3) MOEHLIS, GIBOU, MEIBURG Prerequisites: ME 17 with a minimum grade of C- or Chemical Engineering 132A; open to ME and Chemical Engineering majors only. Numerical analysis and analytical solutions of problems described by linear and nonlinear differential equations with an emphasis on MATLAB. First and second order differential equations; systems of differential equations; linear algebraic equations, matrices and eigenvalues; boundary value problems; finite differences. (F) ## 140B. Theoretical Analysis in Mechanical Engineering (3) MOEHLIS, GIBOU, MEIBURG Prerequisites: ME 140A; open to ME and Chemical Engineering majors only. Analysis of engineering problems formulated in terms of partial differential equations. Solutions of these mathematical models by means of analytical and numerical methods. Physical interpretation of the results. ## 141A. Introduction to Nanoelectromechanical and Microelectromechanical systems (NEMS/ MEMS) (3) TURNER, PENNATHUR Prerequisites: ME 16 & 17; ME 152A & ME 151A (may be concurrent); or ECE 130A & 137A with a minimum grade of C- in both. Same course as ECE 141A. Introduction to nano- and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluidics will be described, with an emphasis on differences of behavior at the nanoscale and realworld examples. #### 141B. MEMS: Processing and Device Characterization (4) TURNER, PENNATHUR Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A. Same course as ECE 141B. Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS. Emphasis on current MEMS devices including accelerometers, comb drives, microreactors and capacitor-actuators. #### 141C. Introduction to Microfluidics and BioMEMS (3) MEINHART Prerequisite: ME 141A or ECE 141A; open to ME and EE majors only. Same course as ECE 141C. Introduces physical phenomena associated with microscale/nanoscale fluid mechanics, microfluids, and bioMEMS. Analytical methods and numerical simulation tools are used for analysis of microfluids. # 146. Molecular and Cellular Biomechanics Course introduces fundamental concepts in molecular and cellular biomechanics. Will consider the role of physical, thermal and chemical forces, examine their influence on cell strength and elasticity, and explore the properties of enzymatically-active materials ### 151A. Thermosciences 1 Prerequisite: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 5C or 6B. Basic concepts in thermodynamics, system analysis, energy, thermodynamic laws, and cycles. # 151B. Thermosciences 2 (4) BENNETT Prerequisite: ME 151A and 152A. Introduction to heat transfer processes, steady and unsteady state conduction, multidimensional analysis. Introduction to convective heat transfer. (W) #### 151C. Thermosciences 3 (3) BENNETT Prerequisites: ME 151B and 152B; open to ME majors only. Convective heat transfer, external and internal flow, forced and free convection, phase change, heat exchangers. Introduction to radiative heat transfer. #### 152A. Fluid Mechanics (4) MEINHART, PENNATHUR Prerequisite: Mathematics 5C or 6B; and ME 16 with a minimum grade of C-. Introduction to the fundamental concepts in fluid mechanics and basic fluid properties. Basic equations of fluid flow. Dimensional analysis and similitude. Hydrodynamics. (F) # 152B. Fluid Mechanics (3) MEINHART, PENNATHUR Prerequisite: ME 152A; open to ME majors only. Incompressible viscous flow. Boundary-layer theory. Introductory considerations for onedimensional compressible flow. ### 153. Introduction to Mechanical Engineering Design (3) BELTZ, TURNER, KEDWARD Prerequisites: ME 10 and 16; open to ME majors only. Design methods. Creative thinking. Introduction to manufacturing processes, design for manufacturing. Project planning and teamwork. Applications of engineering software. Application of engineering principles to practical problem solving. Codes and standards. Engineering ethics #### 154. Design and Analysis of Structures (3) MCMEEKING, KEDWARD, SHUGAR Prerequisites: ME 15 and 16 with minimum grades of C-; open to ME majors only. Introductory course in structural analysis and design. The theories of matrix structural analysis and finite element analysis for the solution of analytical and design problems in structures are emphasized. Lecture material includes structural theory compatibility method, slope deflection method, displacement method and virtual work. Topics include applications to bars, beams, trusses, frames, and solids. #### 155A. Control System Design (3) BAMIEH, BULLO, KHAMMASH Prerequisite: ME 17 with a minimum grade of C-; ME 140A (may be taken concurrently); and ME 163. The discipline of control and its application. Dynamics and feedback. The mathematical models: transfer functions and state space descriptions. Simple control design (PID). Assessment of a control problem, specification, fundamental limitations, codesign of system and control. # 155B. Control System Design Prerequisite: ME 155A. Dynamic system modeling using state-space methods, controllability and observability, statespace methods for control design including pole placement, and linear quadratic regulator methods. Observers and observer-based feedback controllers. Sampled-data and digital control. Laboratory exercises using MATLAB for simulation and control design. ## 156A. Mechanical Engineering Design - I Prerequisite: ME 151C, 152B, and 153; and MATRL 101 or 100B; open to ME majors only The rational selection of engineering materials, and the utilization of Ashby- charts, stress, strain, strength, and fatigue failure consideration as applied to the design of machine elements. Lectures also support the development of system design concepts using assigned projects and involves the preparation of engineering reports and drawings. #### 156B. Mechanical Engineering Design II (3) KEDWARD Prerequisites: ME 156A; open to ME majors only. Machine elements including gears, bearings, and shafts. Joint design and analysis: bolts, rivets. adhesive bonding and welding. Machine dynamics and fatigue. Design for reliability and safety. Codes and standards. Topics covered are applied in practical design projects. #### 158. Computer Aided Design and Manufacturing (3) BOTHMAN Prerequisites: ME 10 and 156A; open to ME majors Engineering applications using advanced 3-D CAD software for plastic part designs and tooling. Topics include an overview of the design for injection molded plastic parts, material selections and electronic tooling design via CAD and CNC system software. Emphasis is put into final design projects that are designed to be functional, manufacturable, and esthetically pleasing #### 162. Introduction to Elasticity (3) MCMEEKING, BELTZ Prerequisites: ME 15 and 140A. Equations of equilibrium, compatibility, and boundary conditions. Solutions of two-dimensional problems in rectangular and polar coordinates. Eigen-solutions for the Wedge and Williams' solution for cracks. Stress intensity factors. Extension, torsion, and bending. Energy theorems. Introduction to wave propagation in elastic solids. # 163. Engineering Mechanics: Vibrations (3) MEZIC, MCMEEKING Prerequisites: ME 16 with a minimum grade of C-; open to ME majors only. Not open for credit to students who have completed ME 163B. . Topics relating to vibration in mechanical systems; exact and approximate methods of analysis, matrix methods, generalized coordinates and Lagrange's equations, applications to systems. Basic feedback systems and controlled dynamic #### 166. Advanced Strength of Materials (3) TURNER, KEDWARD Prerequisite: ME 15. Analysis of statically determinate and indeterminate systems using integration, area moment, and energy methods. Beams on elastic foundations, curved beams, stress concentrations, fatigue, and theories of failure for ductile and brittle materials.
Photoelasticity and other experimental techniques are covered, as well as methods of interpreting in-service failures. #### 167. Structural Analysis (3) YANG Prerequisites: ME 15 or 165; and ME 140A. Presents introductory matrix methods for analysis of structures. Topics include review of matrix algebra and linear equations, basic structural theorems including the principle of superposition and energy theorems, truss bar, beam and plane frame elements, and programming techniques to realize these concepts. ## 169. Nonlinear Phenomena (4) MEZIC, KHAMMASH Prerequisites: Physics 105A or ME 163; or upperdivision standing in ECE. Same course as ECE 183 and Physics 106. Not open for credit to students who have completed ME 163C. An introduction to nonlinear phenomena. Flows and bifurcation in one and two dimensions, chaos, fractals, strange attractors. Applications to physics, engineering, chemistry, and biology. # 173. Control Systems Synthesis Prerequisite: ME 155A Not open for credit to students who have completed ECE 147A. Pole-placement, observer design, observerbased compensation, frequency and time-domain techniques, internal model principle, linear quadratic regulators, modeling uncertainty in signals and systems, robust stability and performance, synthesis for robustness. # 179D. Introduction to Robotics: Dynamics and Control (4) BYL Prerequisites: ECE 130A or ME 155A (may be taken concurrently). Dynamic modeling and control methods for robotic systems. LaGrangian method for deriving equations of motion, introduction to the Jacobian, and modeling and control of forces and contact dynamics at a robotic end effector. Laboratories encourage a problem-solving approach to control. # 179L. Introduction to Robotics: Design Laboratory (4) PADEN Prerequisites: ENGR 3; and ME 6 or ECE 2A. Not open for credit to student who have completed Mechanical Engineering 170C or ECE 181C. Design, programming, and testing of mobile robots. Design problems re formulated in terms of robot performance. Students solve electromechanical problems, developing skills in brainstorming, concept selection, spatial reasoning, teamwork and communication. Robots are controlled with micro-controllers using C programming interfaced to senors and motors. # 179P. Introduction to Robotics: Planning and Kinematics (4) BULLO Prerequisites: Engr 3; and either ME 17 or ECE 130C (may be taken concurrently). Not open for credit to students who have completed ME 170A or ECE 181A. Motion planning and kinematics topics with an emphasis on geometric reasoning, programming and matrix computations. Motion planning: configuration spaces, sensor-based planning, decomposition and sampling methods, and advanced planning algorithms. Kinematics: reference frames, rotations and displacements, kinematic motion models. # 185. Materials in Engineering (3) LEVI, ODETTE Prerequisite: Materials 100B or 101. Same course as Materials 185. Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of metals, ceramics, polymers, and composites more relevant to structural applications. The relationship of properties to structure and processing is emphasized in every case. # **186. Manufacturing and Materials** (3) LEVI, ODETTE Prerequisites: ME 15 and 151C; and, Materials 100B or 101. Same course as Materials 186. Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed. #### ME 189A. Capstone Mechanical Engineering Design Project (2) LAGUETTE Prerequisite: ME 153; and ME 156A (may be taken concurrently). Designed for majors. Concurrently offered with ME 156A. Quarters usually offered: Fall. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project. Course can only be repeated as a full sequence (189A-B-C). Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations are covered. Emphasis on practical, hands-on experience, and the integration of analytical and design skills acquired in the companion ME 156 courses. #### ME 189B. Capstone Mechanical Engineering Design Project (2) LAGUETTE Prerequisite: ME 189A Designed for majors. Concurrently offered with ME 156B. Quarters usually offered: Winter. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project. Course can only be repeated as a full sequence (189A-B-C). Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and integrates analytical and design skills acquired in the companion ME 156 courses. #### ME 189C. Capstone Mechanical Engineering Design Project (2) LAGUETTE Prerequisite: ME 189A,B Designed for majors. Quarters usually offered: Spring. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project. Course can only be repeated as a full sequence (189A-B-C). Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and integrates analytical and design skills acquired in the companion ME 156 courses. # 193. Internship in Industry (1) STAFF Prerequisite: consent of instructor and prior departmental approval needed. Cannot be used as a departmental elective. May be repeated to a maximum of 2 units. Students obtain credit for a mechanical engineering related internship and/or industrial experience under faculty supervision. A 6-10 page written report is required for credit. # 197. Independent Projects in Mechanical Engineering Design (1-4) STAF Prerequisites: ME 16; consent of instructor. May be repeated for a maximum of 12 units, variable hours. No more than 4 units may be used as departmental electives. Special projects in design engineering. Course offers motivated students opportunity to synthesize academic skills by designing and building new machines # 199. Independent Studies in Mechanical Engineering (1-5) STAFF Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in Mechanical Engineering. Students must have a minimum of 3.0 gradepoint average for the preceding three quarters and are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. No more than 4 units may be used as departmental electives. May be repeated to 12 units. Directed individual study. ### **GRADUATE COURSES** Graduate courses for this major can be found in the *UCSB General Catalog*. for letter grades. # **CHEMICAL ENGINEERING 2012-13** | | | Units | Units | |-----------------------------------|------------------------------|--------------------------------|--| | PREPARATION | FOR THE MAJOR | 80 | UNIVERSITY REQUIREMENTS | | | | | American History and Institutions – (one 4-unit course, may be | | CH E 1A | | | counted as G.E. if selected from approved list) | | | | | | | | | 9 | | | | | CC 6 | LIC Fatas I and Bassimon out Facilish Commention | | | | 6 | UC Entry Level Requirement: English Composition | | | | | Must be fulfilled within three quarters of matriculation | | | | 12 | Satisfied by: | | | | 3 | Sutisfied by: | | | | | GENERAL EDUCATION | | PHYS 1, 2, 3, 3L, 4 | 4, 4L | 16 | OZI (ZIWIZ ZZV C.IIIO) | | | | | General Subject Areas | | UPPER DIVISION | ON MAJOR | 78 | Area A: English Reading & Comprehension – (2 courses required) | | | | 6 | Treats. English Reading & Comprehension (2 courses required) | | CH E 119 | | 1 | A-1: | | | | | A-1A-2 | | | | | | | | | 10 | Areas D & E: Social Sciences, Culture and Thought | | | | 6 | (2 courses minimum) | | | | | | | | | | Areas F & G: The Arts, Literature | | | | 3 | (2 courses minimum) | | | | 6 | | | | | 6 | | | | | 8 | 2 additional courses from Areas D, E, F, G, or H | | MATRL 101 or MA | ATRL 100B * | | , | | * see note on next page | e | | | | m 1 1 1 m 1 | | 10 | Special Subject Areas | | | | 12 | Special Subject Areas | | | | ectives must be obtained | Depth: | | from the student's fac | ruity aaviser. | | | | . 170 1 : | 1.E1 .: D .: | . 1 | | | | al Elective Requireme | | | | CH E 102 | CHEM 126 | MCDB 111 | Ethnicity (1 course): | | CH E 121 | CHEM 142A-B-C | MCDB 126A-B-C | Edifficity (1 course) | | CH E 124 | CHEM 145 | MCDB 133 | European Traditions (1 course): | | CH E 125 | CHEM 147 | MCDB 138 | | | CH E 136 | CHEM 150 | ME 110 | Writing (4 courses required): | | CH E 141 | ECE 130A-B-C | ME 112 | | | CH E 141 | ECE 183 | ME 114 | | | CH E 152B | ENGR 101 | ME 119 | | | CH E 154 | ENGR 103
ENV S 105 | ME 128 | | | CH E 160
CH E 171 | | ME 134
ME 169 | NON MATOD ELECTIVES 24 | | CH E 171
CH E 196 ¹ | MATH 122A-B
MATRL 100A,C | | NON-MAJOR ELECTIVES 36 | | CH E 198 ¹ | MATRL 100A,C | ME 185
PHYS 123A-B | General Education and Free Electives taken: | | CHEM 115A-B-C | MATRL 185 | PHYS 123A-B
PHYS 127AL | | | CHEM 113A-B-C
CHEM 123 | MATRL 185
MCDB 101A-B | PHYS 127AL
PHYS 127BL | | | | | mbined; only for students with | | | GPA of 3.0 or higher. | in on E 190
and on E 190 co. | monieu, omy ror students with | | | Technical elective | es taken: | | | | | | | | | | | | | | Courses requi | red for the major, ins | ide or outside of the | | | | f Chemical Engineering | | | | | passed grading option. | | TOTAL UNITS REQUIRED FOR GRADUATION 194 | | | | | | TOTAL UNITS REQUIRED FOR GRADUATION 194 # **CHEMICAL ENGINEERING 2012-13** ### FRESHMAN YEAR | FALL | units | WINTER | units | SPRING units | |-------------------------|-------|-----------------|-------|-----------------------------| | CH E 1A | 1 | CHEM 1B or 2B | 3 | CHEM 1C or 2C 3 | | CHEM 1A or 2A | 3 | CHEM 1BL or 2BC | 2 | CHEM 1CL or 2CC 2 | | CHEM 1AL or 2AC | 2 | MATH 3B | 4 | MATH 4A 4 | | ENGR 3 or G.E. Elective | 3 | PHYS 1 | 4 | PHYS 2 4 | | MATH 3A | 4 | WRIT 2E or 50E | 4 | WRIT 50E or G.E. Elective 4 | | WRIT 1E or 2E | 4 | | | or ENGR 3 | | TOTAL | 17 | | 17 | 17 | ### **SOPHOMORE YEAR** | FALL | units | WINTER | units | SPRING | units | |-----------|-------|-----------|-------|---------------|-------| | CH E 10 | 3 | CH E 110A | 3 | CH E 110B | 3 | | CHEM 109A | 4 | CHEM 6AL | 3 | CHEM 6BL | 3 | | MATH 4B | 4 | CHEM 109B | 4 | CHEM 109C | 4 | | PHYS 3 | 3 | MATH 6A | 4 | MATH 6B | 4 | | PHYS 3L | 1 | PHYS 4 | 3 | G.E. Elective | 4 | | | | PHYS 4L | 1 | | | | TOTAL | 15 | | 18 | | 18 | ### **JUNIOR YEAR** | FALL | units | WINTER | units | SPRING u | nits | |---------------|-------|-------------------------|-------|----------------------------|------| | CH E 119 | 1 | CH E 120B | 3 | CH E 120C | 3 | | CH E 120A | 4 | CH E 132C | 3 | CH E 140A | 3 | | CH E 128 | 3 | CHEM 113B | 4 | CH E 180A | 3 | | CH E 132A | 4 | MATRL 101 or MATRL 100E | 3* 3 | CHEM 113C | 4 | | G.E. Elective | 4 | G.E. Elective | 3 | Technical or Free Elective | 3 | | TOTAL | 16 | | 16 | | 16 | | FALL | units | WINTER | units | SPRING un | its | |----------------------------|-------|-----------------------------|-------|-----------------------------|-----| | CH E 132B | 3 | CH E 180B | 3 | CH E 184B | 3 | | CH E 140B | 3 | CH E 184A | 3 | G.E. Elective | 4 | | CH E 152A | 4 | G.E. Elective | 4 | Technical or Free Electives | 7 | | CH E 170 | 3 | Technical or Free Electives | 4 | | | | Technical or Free Elective | 3 | | | | | | TOTAL | 16 | | 14 | | 14 | ^{*} if applying to the BS/MS Materials program, juniors must take MATRL 100A in fall, MATRL 100B in winter, and MATRL 100C in spring. # COMPUTER ENGINEERING 2012-13 | | | Units | Units | |---|---|---------------------|--| | PREPARATION FOR T | HE MAJOR | 73 | UNIVERSITY REQUIREMENTS | | CHEM 1A, 1AL or 2A, 2A | C | 5 | American History and Institutions – (one 4-unit course) | | CMPSC 16 | | | (may be counted as G.E. if selected from approved list) | | CMPSC 24 | | | | | CMPSC 32 | | | | | CMPSC 40 | | | UC Entry Level Requirement: English Composition | | ECE 1 | | | Must be fulfilled within three quarters of matriculation | | ECE 2A-B-C | | | | | ECE 15A | | | Satisfied by: | | MATH 3A-B, 4A-B | | | GENERAL EDUCATION | | PHYS 1, 2, 3, 3L, 4, 4L | | | GENERAL EDUCATION | | 11113 1, 2, 3, 3L, 4, 4L | | 10 | General Subject Areas | | UPPER DIVISION MAJ | IOR | 68 | Area A: English Reading & Comprehension – (2 courses required) | | | | | Area A. English Reading & Comprehension – (2 courses required) | | CMPSC 130A | | | A-1:A-2: | | CMPSC 170 | | | | | ECE 139 or PSTAT 120A | | | Areas D & E: Social Sciences, Culture and Thought | | ECE 152A | | | (2 courses minimum) | | ECE 154A | | | (2 courses minimum) | | ECE 156A | | | Areas F & G: The Arts, Literature | | ENGR 101 | | 3 | (2 courses minimum) | | Computer Engineering elec | tives selected | | (2 courses imminum) | | from the following list: | | 40 | | | from the following list: | | | 2 additional courses from Areas D, E, F, G, or H | | Prior approval of the stude
be obtained from the stude | nt's departmental e
nt's faculty adviser | electives must
: | | | Must include at least 2 s | sequences and 8 u | nits of senior | Special Subject Areas | | computer systems proje | | | Dougle | | CMPSC 130B | ECE 123 | ECE 189A-B/ | Depth: | | CMPSC 138 | ECE 123
ECE 124A,124D | | <u> </u> | | CMPSC 153A/ECE 153A | ECE 130A-B | CIVII SC 10771 B | | | CMPSC 160 | ECE 147A-B | | Ethnicity (1 course): | | CMPSC 162 | ECE 150 | | Ethinicity (1 course) | | CMPSC 165A-B | ECE 151/CMPSC | 171 | European Traditions (1 course): | | CMPSC 171 | ECE 153B | | , , , | | CMPSC 176A-B/ECE 155A-E | | | Writing (4 courses required): | | | ECE 156B | 102 | | | CMPSC 177
CMPSC 178 | ECE 160/CMPSC
ECE 178 | 182 | | | CMPSC 178
CMPSC 181B/ECE 181B | ECE 178
ECE 179D, 179P | | | | Computer Engineering elec | | | | | Computer Engineering elec | lives taken. | | NON-MAJOR ELECTIVES 44 | | | | | General Education and Free Electives taken: | | | | | | | | | | | | | | | | | MARKE GOIRNOR PNO | D DI DOMINI | | | | MATH, SCIENCE, ENG | | 1iat) | | | (See ECE Dept. student off | * * | , | | | Elective taken: | | | | | Courses required for the maj | or, inside or outside o | of the Departments | | | of Computer Science or E | | | | | cannot be taken for the passe | | | TOTAL UNITS REQUIRED FOR GRADUATION 189 | | be taken for letter grades. | | | 10 III CITIO III QUINID I ON GINIDONIIION 10) | # COMPUTER ENGINEERING 2012-13 ### **FRESHMAN YEAR** | FALL | units | WINTER | units | SPRING u | nits | |---------------------------------------|----------------|---------------------|---------|---------------------------|------| | CHEM 1A or 2A | 3 | ECE 15A or Math, So | cience, | CMPSC 16 | 4 | | CHEM 1AL or 2AC | 2 | or Engr. Elective | 4 | ECE 1 | 1 | | MATH 3A | 4 | MATH 3B | 4 | MATH 4A | 4 | | G.E. Elective or CMPSC 8 ¹ | ¹ 4 | PHYS 1 | 4 | PHYS 2 | 4 | | WRIT 1E or 2E | 4 | WRIT 2E or 50E | 4 | WRIT 50E or G.E. Elective | 4 | | TOTAL | 17 | | 16 | | 17 | ### **SOPHOMORE YEAR** | FALL | units | WINTER | units | SPRING | units | |----------|-------|---------------------|--------|------------------------------------|-------| | CMPSC 40 | 4 | CMPSC 24 | 4 | CMPSC 32 | 4 | | ECE 2A | 5 | ECE 2B | 5 | ECE 2C | 5 | | MATH 4B | 4 | ECE 15A or Math, Sc | ience, | ECE 152A | 5 | | PHYS 3 | 3 | or Engr. Elective | 4 | ECE 139 or PSTAT 120A ² | 4 | | PHYS 3L | 1 | PHYS 4 | 3 | | | | | | PHYS 4L | 1 | | | | TOTAL | 17 | | 17 | | 18 | ### **JUNIOR YEAR** | FALL | units | WINTER | units | SPRING | units | |------------------------|-------|------------------------|-------|-----------------------|-------| | ECE 154A | 4 | CMPSC 130A | 4 | CMPSC 170 | 4 | | ECE 156A | 4 | CMPEN Elective | 4 | CMPEN Elective | 4 | | CMPEN Elective | 4 | G.E. or Free Electives | 8 | G.E. or Free Elective | 4 | | G.E. or Free Electives | 4 | | | | | | TOTAL | 16 | | 16 | | 12 | | FALL | units | WINTER | units | SPRING | units | |-----------------|-------|------------------------|-------|------------------------|-------| | CMPEN Electives | 12 | CMPEN Electives | 8 | CMPEN Electives | 12 | | Free Elective | 4 | ENGR 101 | 3 | | | | | | Free Elective | 4 | | | | TOTAL | 16 | | 15 | | 12 | ¹ CMPSC 8 is recommended only for students who do not have prior programming experience, as programming experience is a prerequisite for CMPSC 16. ² PSTAT 120A is offered each quarter. ECE 139 is offered only in spring quarter, and is better suited for future upper division electives for the Computer Engineering major. option. They must be taken for letter grades. # **COMPUTER SCIENCE 2012-13** | | | Units | Units | |---|---------------------------------|-------------------------|--| | PREPARATION FOR | R THE MAJOR | 52 | UNIVERSITY REQUIREMENTS | | CMPSC 16 | | 4 | American History and Institutions – (one 4-unit course, may be | | CMPSC 24 | | 4 | counted as G.E. if selected from approved list) | | CMPSC 32 | | 4 | | | CMPSC 40 | | 4 | | | CMPSC 48 | | 4 | UC Entry Level Requirement: English Composition | | CMPSC 56 | | | Must be fulfilled within three quarters of matriculation | | CMPSC 64 | | | Musi be jugited within three quarters of main editation | | MATH 3A-B, 4A-B, 6A | | | Satisfied by: | | PSTAT 120A | | | | | 101711 12071 | | | GENERAL EDUCATION | | UPPER DIVISION M | IAJOR | 64 | Consul C. L'art Assess | | CMPSC 111 or 140 | | 4 | General Subject Areas | | CMPSC 130A-B | | | Area A: English Reading & Comprehension – (2 courses required) | | CMPSC 138 | | | | | CMPSC 154 | | | A-1:A-2: | | CMPSC 160 | | | | | CMPSC 162 | | | Areas D & E: Social Sciences, Culture and Thought | | CMPSC 170 | | | (2 courses minimum) | | ECE 152A | | | | | | | | Areas F & G: The Arts, Literature | | ENGR 101 | | | (2 courses minimum) | | PSTAT 120B | | 4 | | | Major Field Electives selected from the following lis | | | 2 additional courses from Areas D, E, F, G, or H | | Prior approval of the stude
from the undergraduate ad | | must be obtained | Special Subject Areas | | CMDCC/MATH 100 A.D.C | CMDCC 170 | ECE 120A D C | | | CMPSC/MATH 109A-B-C
CMPSC 111 ¹ | CMPSC 178
CMPSC 180 | ECE 130A-B-C
ECE 140 | Depth: | | CMPSC 140 ¹ | CMPSC 180
CMPSC 181B/ECE 181 | | | | CMPSC/ECE 153A | CMPSC 182/ECE160 | ECE 153B | <u> </u> | | CMPSC 165A-B | CMPSC 185 | MATH 108A-B | | | CMPSC 167 | CMPSC 186 | MATH 119A-B | Ethnicity (1 course): | | CMPSC 171/ECE 151 | CMPSC 189 A-B | MATH 124A-B | European Traditions (1 agrees). | | CMPSC 172 | CMPSC 190 AA-ZZ | PSTAT 122 | European Traditions (1 course): | | CMPSC 174A-B | CMPSC 192 ² | PSTAT 130 | Writing (4 courses required): | | CMPSC 176A-B-C | CMPSC 196 ² | PSTAT 132C | writing (4 courses required). | | CMPSC 177 | | | | | 1 | | | | | ¹ CMPSC 111 or CMPSC 140 can ² Four units maximum from CMPS | | | | | GPA of 3.0 or
higher. | | | NON-MAJOR ELECTIVES 48 | | Major Field Electives ta | ken: | | General Education and Free Electives taken: | | | | | General Education and Free Electives taken. | | | | | | | | | | | | | | | | | SCIENCE COURSES | | 20 | | | PHYS 1, 2, 3, 3L | | 12 | | | Science Electives (see D | | | | | Science Electives taken: | • | | - | | belefice Electives takell. | • | | | | | | | <u> </u> | | Courses required for the | major, inside or outside of | the Department of | | Computer Science, cannot be taken for the passed/not passed grading TOTAL UNITS REQUIRED FOR GRADUATION 184 # **COMPUTER SCIENCE 2012-13** ### FRESHMAN YEAR | FALL | units | WINTER | units | SPRING | units | |-----------------------------|-------|-------------------|---------------|--------------------------|-------| | G.E. Elective or CMPSC 8* | 4 | CMPSC 16 | 4 | CMPSC 24 | 4 | | MATH 3A | 4 | MATH 3B | 4 | MATH 4A | 4 | | WRIT 1, 2, or G.E. Elective | 4 | PHYS 1 | 4 | PHYS 2 | 4 | | G.E. Elective | 4 | WRIT 1, 2, or G.E | E. Elective 4 | Science or Free Elective | 4 | | TOTAL | 16 | | 16 | | 16 | ### **SOPHOMORE YEAR** | FALL | units | WINTER | units | SPRING | units | |----------|-------|----------|-------|--------------------------|-------| | CMPSC 32 | 4 | CMPSC 48 | 4 | CMPSC 64 | 4 | | CMPSC 40 | 4 | CMPSC 56 | 4 | PSTAT 120A | 4 | | MATH 4B | 4 | MATH 6A | 4 | G.E. Elective | 4 | | PHYS 3 | 3 | WRIT 50 | 4 | Science or Free Elective | 4 | | PHYS 3L | 1 | | | | | | TOTAL | 16 | | 16 | | 16 | ### **JUNIOR YEAR** | FALL | units | WINTER | units | SPRING | units | |--------------------------|-------|---------------|-------|------------------------|-------| | CMPSC 130A | 4 | CMPSC 130B | 4 | CMPSC 154 | 4 | | CMPSC 138 | 4 | ECE 152A | 5 | PSTAT 120B | 4 | | G.E. Elective | 4 | Free Elective | 3 | Field or Free Elective | 4 | | Science or Free Elective | 4 | G.E. Elective | 4 | G.E. Elective | 4 | | TOTAL | 16 | | 16 | | 16 | | FALL | units | WINTER | units | SPRING | units | |------------------------|-------|------------------------|-------|------------------------|-------| | CMPSC 111 ** | 4 | CMPSC 160 | 4 | Field or Free Elective | 4 | | CMPSC 170 | 4 | CMPSC 162 | 4 | Field or Free Elective | 4 | | Field or Free Elective | 4 | ENGR 101 | 3 | G.E. or Free Elective | 5 | | | | Field or Free Elective | 4 | | | | TOTAL | 12 | | 15 | | 13 | ^{*} CMPSC 8 is recommended only for students who do not have prior programming experience; programming experience is a prerequisite for CMPSC 16. ^{**} or you may take CMPSC 140 in winter quarter to satisfy this requirement. # **ELECTRICAL ENGINEERING 2012-13** | | | Units | Units | |---------------------|------------------------|--------------------------------------|--| | PREPARATIO | N FOR THE MA | AJOR 84 | UNIVERSITY REQUIREMENTS | | | | | American History and Institutions – (one 4-unit course, may be | | | | 2AC, 2B, 2BC 10 | counted as G.E. if selected from approved list) | | | | 4 | | | | | 4 | | | | | | UC Entry Level Requirement: English Composition | | | | 4 | Must be fulfilled within three quarters of matriculation | | | | | Satisfied by: | | | | 24 | Satisfied by. | | PHYS 1, 2, 3, 3L, | , 4, 4L, 5, 5L | 20 | GENERAL EDUCATION | | UPPER DIVISI | ION MA IOR | 68 | | | OTTER DIVISI | ION MAJOR | 00 | General Subject Areas | | ECE 130A-B | | 8 | Area A: English Reading & Comprehension – (2 courses required) | | | | | | | | | 4 | A-1:A-2: | | | | 8 | | | | | 4 | Areas D & E: Social Sciences, Culture and Thought | | | | 5 | (2 courses minimum) | | | | 3 | A man F O C. The Arts Literature | | | | | Areas F & G: The Arts, Literature (2 courses minimum) | | Departmental elec | ctives selected fro | om | (2 courses minimum) | | | | | | | C | | | 2 additional courses from Areas D, E, F, G, or H | | Prior approval of | the student's dep | partmental electives must | 2 additional courses from Areas D, E, 1, G, of 11 | | be obtained from | the student's fact | ılty adviser. | | | | | | Special Subject Areas | | Approved Departme | | | <u>Special Subject fittens</u> | | ECE 123 | | ECE 179D, P | Depth: | | ECE 124A-B-C-D | | ECE 181B | | | ECE 125
ECE 130C | ECE 152B
ECE 153A-B | ECE 183
ECE 188A-B | | | ECE 136C
ECE 135 | ECE 153A-B | ECE 192 or 196 (4 unit combined max) | | | ECE 141A-B-C | ECE 155A-B | ECE 194AA-ZZ(excluding ECE 194R) | Ethnicity (1 course): | | ECE 144 | ECE 156A-B | ENGR 103, 120, 122 | European Traditions (1 course): | | ECE 145A-B-C | ECE 158 | (1 course max) | European Traditions (1 course). | | ECE 146A-B | ECE 160 | MATRL 100A, C | Writing (4 courses required): | | ECE 147A-B-C | ECE 162A-B-C | | 2 (· · · · · · · · · · · · · · · · · · | | ECE 148 | ECE 178 | MATRL 162A-B | | | | | | | | Departmental Ele | ctives taken: | | | | | | | NON-MAJOR ELECTIVES 42 | | - | | | General Education and Free Electives taken: | Courses requi | ired for the maio | r, inside or outside of the | | | | | mputer Engineering, cannot | | | | | d grading option. They must | | | be taken for le | | | | | | | | TOTAL UNITS REQUIRED FOR GRADUATION 194 | # **ELECTRICAL ENGINEERING 2012-13** ### FRESHMAN YEAR | FALL | units | WINTER | units | SPRING | units | |-----------------|-------|-----------------|-------|------------------|-------| | CHEM 1A or 2A | 3 | CHEM 1B or 2B | 3 | CMPSC 16 | 4 | | CHEM 1AL or 2AC | 2 | CHEM 1BL or 2BC | 2 | MATH 4A | 4 | | ENGR 3 | 3 | MATH 3B | 4 | PHYS 2 | 4 | | MATH 3A | 4 | PHYS 1 | 4 | WRIT 50E or G.E. | 4 | | WRIT 1E or 2E | 4 | WRIT 2E or 50E | 4 | | | | TOTAL | 16 | | 17 | | 16 | ### **SOPHOMORE YEAR** | FALL | units | WINTER | units | SPRING | units | |---------|-------|---------|-------|----------|-------| | ECE 2A | 5 | ECE 2B | 5 | CMPSC 24 | 4 | | MATH 4B | 4 | ECE 15A | 4 | ECE 2C | 5 | | PHYS 3 | 3 | MATH 6A | 4 | MATH 6B | 4 | | PHYS 3L | 1 | PHYS 4 | 3 | PHYS 5 | 3 | | | | PHYS 4L | 1 | PHYS 5L | 1 | | TOTAL | 13 | | 17 | | 17 | ### JUNIOR YEAR | FALL | units | WINTER | units | SPRING | units | |-----------------------|-------|-----------------------|-------|-----------------------|-------| | ECE 130A | 4 | ECE 130B | 4 | ECE 137B | 4 | | ECE 132 | 4 | ECE 137A | 4 | ECE 139 ¹ | 4 | | ECE 134 | 4 | ECE Elective | 4 | ECE 152A ² | 5 | | G.E. or Free Elective | 4 | G.E. or Free Elective | 4 | G.E. or Free Elective | 4 | | TOTAL | 16 | | 16 | | 17 | | FALL | units | WINTER | units | SPRING | units | |-----------------------|-------|------------------------|-------|------------------------|-------| | ECE Electives | 12 | ECE Electives | 8 | ECE Electives | 8 | | G.E. or Free Elective | 4 | G.E. or Free Electives | 8 | ENGR 101 | 3 | | | | | | G.E. or Free Electives | 6 | | TOTAL | 16 | | 16 | | 17 | ¹ ECE 139 may also be taken in the spring quarter of the sophomore year. ² ECE 152A may also be taken in the spring quarter of the sophomore year. # MECHANICAL ENGINEERING 2012-13 | | | Units | Units | |---------------------------------------|--------------------------|---------------------|--| | PREPARATION FOR TH | IE MAJOR | 76 | UNIVERSITY REQUIREMENTS | | CHEM 1A, 1AL, 1B, 1BL o | r 2A, 2AC, 2B, 2I | 3C10 | American History and Institutions – (one 4-unit course, may be | | ENGR 3 | ••••• | 3 | counted as G.E. if selected from approved list) | | MATH 3A-B, 4A-B, 6A-B | | | | | ME 6 | ••••• | 4 | | | ME 10 | ••••• | 4 | UC Entry Level Requirement: English Composition | | ME 14 | | 4 | Must be fulfilled within three quarters of matriculation | | ME 15 | | 4 | | | ME 16 | | 4 | Satisfied by: | | ME 17 | | 3 | GENERAL EDUCATION | | PHYS 1, 2, 3, 3L, 4, 4L | | | GENERAL EDUCATION | | LIDDED DIVISION MAIO | | 70 | General Subject Areas | | UPPER DIVISION MAJO
Third Year | JK | /0 | Area A: English Reading & Comprehension – (2 courses required) | | MATRL 101 or MATRL 100 |)D* | 2 | | | | | | A-1:A-2: | | ME 104 | | | | | ME 1404 | | | Areas D & E: Social Sciences, Culture and Thought | | ME 140A | | | (2 courses minimum) | | ME 151A-B-C | | | | | ME 152A-B | | | Areas F & G: The Arts, Literature | | ME 153 | | | (2 courses minimum) | | ME 155A | | | | | ME 163* see note on next page | | 3 | | | Fourth Year | | | 2 additional courses from Areas D, E, F, G, or H | | ME 154 | | 3 | <u> </u> | | ME 156A-B | | | Special Subject Areas | | ME 189A-B-C | | | Special Subject Areas | | Engineering Electives | | | Depth: | | Prior approval of the student's depo | | | | | the student's faculty adviser. Note, | the list of approved ele | ectives may change | | | from year to year and that not all co | | | | | Approved Engineering Elect | tives. | | Ethnicity (1 course): | | | <u>и ves</u> .
ИЕ 110 | ME 155B | | | | ль 110
Ль 112 | ME 158 | European Traditions (1 course): | | | ле 112
ЛЕ 114 | ME 162 | Wide (A company of the first | | · · | ИЕ 119 | ME 166 | Writing (4 courses required): | | | ИЕ 124 | ME 167 | | | | ME 125AA-ZZ | ME 168 | | | | ME 128 | ME 169 | | | | ИЕ 128
ИЕ 134 | ME 173 | NOV MA TOD DI EGENTES | | | ЛЕ 134
ЛЕ 136 | ME 179D-L-P | NON-MAJOR ELECTIVES 44 | | | | | General Education and Free Electives taken: | | | ME 138 | ME 185 | | | | ME 140B | ME 186 | | | | ME 141A-B-C | ME 1971 | | | | ME 146 | ME 199 ¹ | | | Four units maximum from ME 19 | | - | | | Engineering Electives taken | 1: | | | | | | | | | | | | | | | | | | TOTAL UNITS REQUIRED FOR GRADUATION 190 Courses required for the major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for **letter** grades. # MECHANICAL ENGINEERING 2012-13 ### FRESHMAN YEAR | FALL | units | WINTER | units | SPRING | units | |-------------------------|-------|-----------------|-------|----------------------|-------| | CHEM 1A or 2A | 3 | CHEM 1B or 2B | 3 | MATH 4A | 4 | | CHEM 1AL or 2AC | 2 | CHEM
1BL or 2BC | 2 | ME 10 | 4 | | ENGR 3 or G.E. Elective | 3/4 | MATH 3B | 4 | PHYS 2 | 4 | | MATH 3A | 4 | PHYS 1 | 4 | WRIT 50E, ENGR 3, or | 3/4 | | WRIT 1E or 2E | 4 | WRIT 2E or 50E | 4 | G.E. Elective | | | TOTAL | 16/17 | | 17 | | 15/16 | ### **SOPHOMORE YEAR** | FALL | units | WINTER | units | SPRING | units | |---------------|-------|---------|-------|---------------|-------| | MATH 4B | 4 | MATH 6A | 4 | MATH 6B | 4 | | ME 14 | 4 | ME 6 | 4 | ME 16 | 4 | | PHYS 3 | 3 | ME 15 | 4 | ME 17 | 3 | | PHYS 3L | 1 | PHYS 4 | 3 | G.E. Elective | 4 | | G.E. Elective | 4 | PHYS 4L | 1 | | | | TOTAL | 16 | | 16 | | 15 | ### **JUNIOR YEAR** | FALL | units | WINTER | units | SPRING | units | |-----------------------|-------|-----------------------|-------|-----------------------|-------| | ME 104 | 3 | MATRL 101 or | 3 | ME 105 | 4 | | ME 140A | 3 | MATRL 100B* | | ME 153 | 3 | | ME 151A | 4 | ME 151B | 4 | ME 151C | 3 | | ME 152A | 4 | ME 152B | 3 | ME 155A | 3 | | G.E. or Free Elective | 4 | ME 163 | 3 | G.E. or Free Elective | 4 | | | | G.E. or Free Elective | 4 | | | | TOTAL | 18 | | 17 | | 17 | | FALL | units | WINTER | units | SPRING | units | |------------------------|-------|------------------------|-------|------------------------|-------| | ME 154 | 3 | ME 156B | 3 | ME 189C | 2 | | ME 156A | 3 | ME 189B | 2 | Departmental Electives | 6 | | ME 189A | 2 | Departmental Electives | 6 | G.E. or Free Electives | 4 | | Departmental Electives | 3 | G.E. or Free Elective | 4 | | | | G.E. or Free Elective | 4 | | | | | | TOTAL | 15 | | 15 | | 12 | ^{*} if applying to the BS/MS Materials program, juniors must take MATRL 100A in fall, MATRL 100B in winter, and MATRL 100C in spring. # **Additional Resources and Information** Gaucho On-Line Data (GOLD) – student record, class registration, degree audits—https://my.sa.ucsb.edu/gold UMAIL – campus email for official notifications—http://www.umail.ucsb.edu Schedule of Classes information – quarterly calendar and information—http://www.registrar.ucsb.edu General Catalog for UCSB – academic requirements for all campus majors—http://my.sa.ucsb.edu/Catalog/ Summer Sessions – Summer programs and course offerings—http://www.summer.ucsb.edu Tutoring – course-specific tutoring and academic skills development—http://www.clas.ucsb.edu Education Abroad Program – EAP options for engineering students—email: eap@engineering.ucsb.edu College Honors Program – program information and opportunities—email: honors@engineering.ucsb.edu # **Advising Staff** College Advisors: general education requirements, academic standing, final degree clearance Departmental Advisors: course selection, class enrollment, change of major, academic requirements | | | Phone | Email | Location | |------------------------|-----------------|----------|------------------------|----------------------| | College Advising staff | (805) 893-2809 | | coe-info@engr.ucsb.edu | Frank Hall, Rm. 1006 | | Departmental Advisors: | | | | | | Chemical Engineering | Laura Crownover | 893-8671 | laura@engr.ucsb.edu | Engr.II, Rm. 3357 | | Computer Engineering | Val De Veyra | 893-8292 | ugradinfo@ece.ucsb.edu | Trailer 380, Rm. 101 | | Computer Science | Benji Dunson | 893-4321 | ugradv@cs.ucsb.edu | Frank Hall, Rm. 2104 | | Electrical Engineering | Val De Veyra | 893-8292 | ugradinfo@ece.ucsb.edu | Trailer 380, Rm. 101 | | Mechanical Engineering | Suzi See | 893-8198 | meugrad@engr.ucsb.edu | Engr.II, Rm. 2335 | ## **Policy on Academic Conduct** It is expected that all students in the College of Engineering, as well as those who take courses within the College, understand and subscribe to the ideal of academic integrity. To provide guidance on this, the College of Engineering has adopted a policy on expected academic conduct, a full copy of which appears below. As an example, it is not acceptable by default to work collaboratively on a homework assignment. In computer programming courses, a mere preliminary discussion of an assignment can lead to similarities in the final program that are detectable by sophisticated plagiarism detection software (see http://theory.stanford.edu/~aiken/moss/). Instructors who have established that academic misconduct has occurred in their class have a variety of options at their disposal, which range from allowing the student to redo the work and/or assigning a failing grade to referring the case to the UCSB Judicial Affairs Office for either a letter of warning or a formal hearing before the Student-Faculty Committee on Student Conduct. Instructors are encouraged to discuss these remedies in further detail with the Associate Dean for Undergraduate Studies in the College of Engineering. Moreover, students who have been suspended because of academic misconduct charges are encouraged to work with the College of Engineering Undergraduate Office to develop an amended schedule that will permit the timeliest possible completion of a degree program. ### **College of Engineering Policy** The College of Engineering's Academic Conduct Policy is compatible with that of the University of California, in that it is expected that students understand and subscribe to the ideal of academic integrity, and are willing to bear individual responsibility for their work. Any work (written or otherwise) submitted to fulfill an academic requirement must represent a student's original work. Any act of academic dishonesty, such as cheating or plagiarism, will subject a person to University disciplinary action. Cheating is defined by UCSB as the use, or attempted use, of materials, information, study aids, or services not authorized by the instructor of the course. The College of Engineering interprets this to include the unauthorized use of notes, study aids, electronic or other equipment during an examination or quiz; copying or looking at another individual's examination or quiz; taking or passing information to another individual during an examination or quiz; taking an examination or quiz for another individual; allowing another individual to take one's examination; stealing examinations or quizzes. Students working on take-home exams or quizzes should not consult students or sources other than those permitted by the instructor. Plagiarism is defined by UCSB as the representation of words, ideas, or concepts of another person without appropriate attribution. The College of Engineering expands this definition to include the use of or presentation of computer code, formulae, ideas, or research results without appropriate attribution. Collaboration on homework assignments (i.e., problem sets), especially in light of the recognized pedagogical benefit of group study, is dictated by standards that can and do vary widely from course to course and instructor to instructor. The use of old solution sets and published solution guides presents a similar situation. Because homework assignments serve two functions--helping students learn the material and helping instructors evaluate academic performance--it is usually not obvious how much collaboration or assistance from commonly-available solutions, if any, the instructor expects. It is therefore imperative that students and instructors play an active role in communicating expectations about the nature and extent of collaboration or assistance from materials that is permissible or encouraged. ### **Expectations of Members of the College Academic Community** In their classes, faculty are expected to (i) announce and discuss specific problems of academic dishonesty that pertain particularly to their classes (e.g., acceptable and unacceptable cooperation on projects or homework); (ii) act reasonably to prevent academic dishonesty in preparing and administering academic exercises, including examinations, laboratory activities, homework and other assignments, etc.; (iii) act to prevent cheating from continuing when it has been observed or reported to them by students, chairs, or deans; and, (iv) clearly define for students the maximum level of collaboration permitted for their work to still be considered individual work. In their academic work, students are expected to (i) maintain personal academic integrity; (ii) treat all exams and quizzes as work to be conducted privately, unless otherwise instructed; (iii) take responsibility for knowing the limits of permissible or expected cooperation on any assignment.