Heat Exchanges/Theory

The double-pipe heat exchanger

Call the hot stream ${ }_{h}$ and the cold stream ${ }_{c}$ and determine all coefficients w.r.t the outside diameter of inside pipe.

Usually, we need to figure out the required heat transfer area for a given job, given a flowrate and a temperature difference.

Performing an energy balance on each stream separately, we get

Usually, $w_{c}, C p_{c}, w_{h}, C p_{h}, U_{0}$ are temperature and position dependent.
To simplify, assume mass flow, and $C p_{c}$, are independent of temperature hence, position.
Then integrate inside equations.

$$
w_{c} C p_{c}\left(T_{c, 2}-T_{c, 1}\right)=-w_{h} C p_{h}\left(T_{h, 2}-T_{h, 1}\right)=Q
$$

and

$$
\begin{aligned}
w_{c} C p_{c} d t_{c} & =U_{0}\left(t_{h}-t_{c}\right) d A_{0} \\
-w_{h} C p_{c} d t_{h} & =U_{0}\left(t_{h}-t_{c}\right) d A_{0} \\
\rightarrow \frac{d t_{c}}{t_{h}-t_{c}} & =\frac{U_{0} d A_{0}}{w_{c} C p_{c}} \\
\rightarrow-\frac{d t_{h}}{t_{h}-t_{c}} & =\frac{U_{0} d A_{0}}{w_{h} C p_{h}}
\end{aligned}
$$

if we add these two

$$
-\left(\frac{d\left(t_{h}-t_{c}\right)}{\left(t_{h}-t_{c}\right)}\right)=U_{0} d A_{0}\left(\frac{1}{w_{c} C p_{c}}+\frac{1}{w_{h} C p_{h}}\right)
$$

This equation relates the Δt 's to position
for U_{0} independent of position, integrate from inlet (1) to outlet (2)

$$
-\ell n\left(\frac{\left(t_{h, 2}-t_{c, 2}\right)}{\left(t_{h, 1}-t_{c, 1}\right)}\right)=U_{0} A_{0}\left(\frac{1}{w_{c} C p_{c}}+\frac{1}{w_{h} C p_{h}}\right)
$$

$$
\begin{aligned}
& \frac{1}{w_{h} C p_{h}}=\frac{t_{h, 2}-t_{h, 1}}{-Q} \\
& \frac{1}{w_{c} C p_{c}}=\frac{t_{c, 2}-t_{c, 1}}{Q}
\end{aligned}
$$

Hence

$$
\begin{aligned}
-\ell n\left(\frac{\left(t_{h, 2}-t_{c, 2}\right)}{\left(t_{h, 1}-t_{c, 1}\right)}\right) & =\frac{U_{0} A_{0}}{Q}\left(\left(t_{c, 2}-t_{c, 2}\right)-\left(t_{h, 1}-t_{h, 1}\right)\right) \\
& =-\frac{U_{0} A_{0}}{Q}\left(\left(t_{h, 2}-t_{c, 1}\right)-\left(t_{h, 2}-t_{c, 1}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
U_{0} A_{0} \frac{\left(t_{h, 2}-t_{c, 2}\right)-\left(t_{h, 1}-t_{c, 1}\right)}{\ln \frac{\left(t_{h, 2}-t_{c, 2}\right)}{\left(t_{h, 1}-t_{c, 1}\right)}}=Q=U_{0} A_{0} \Delta t_{\ell m} \\
\Delta t_{\ell m}=\frac{\left(t_{h, 2}-t_{c, 2}\right)-\left(t_{h, 1}-t_{c, 1}\right)}{\ln \frac{\left(t_{h, 2}-t_{c, 2}\right)}{\left(t_{h, 1}-t_{c, 1}\right)}}
\end{gathered}
$$

Linear Temperature Dependence of $\boldsymbol{U}_{\mathbf{0}}$ on Temperature

Let $U_{0}=a+b \Delta t$
and insert this in the balance equation

$$
\begin{aligned}
w_{c} C p_{c} d t_{c} & =U_{0}\left(t_{h}-t_{c}\right) d A_{0} \\
-w_{h} C p_{c} d t_{h} & =U_{0}\left(t_{h}-t_{c}\right) d A_{0} \\
\frac{d t_{c}}{t_{h}-t_{c}} & =\frac{U_{0}}{w_{c} C p_{c}} d A_{0} \\
-\frac{d t_{c}}{t_{h}-t_{c}} & =\frac{U_{0}}{w_{h} C p_{h}} d A_{0} \\
-\frac{d\left(t_{h}-t_{c}\right)}{\left(t_{h}-t_{c}\right)} & =U_{0} d A_{0}\left(\frac{1}{w_{c} C p_{c}}+\frac{1}{w_{h} C p_{h}}\right) \\
\frac{d\left(t_{h}-t_{c}\right)}{U_{0}\left(t_{h}-t_{c}\right)} & =d A_{0}(\underbrace{}_{\left.\frac{\Delta t_{2}-\Delta t_{1}}{\frac{1}{w_{c} C p_{c}}+\frac{1}{w_{h} C p_{h}}}\right)}
\end{aligned}
$$

$$
\text { Let } \quad U_{0}=a+b\left(t_{h}-t_{c}\right)
$$

$$
t_{h}-t_{c}=\Delta t
$$

$$
\int_{\Delta t_{1}}^{\Delta t_{2}} \frac{d(\Delta t)}{(a+b \Delta t) \Delta t}=\frac{\Delta t_{2}-\Delta t_{1}}{Q} A_{0}
$$

$$
\left.\left[\frac{1}{a}\right] \ln \frac{\Delta t}{a+b \Delta t}\right|_{\Delta t_{1}} ^{\Delta t_{2}}=\left.\left[\frac{1}{a}\right] \ln \frac{\Delta t}{U_{0}}\right|_{\Delta t_{1}} ^{\Delta t_{2}}
$$

$$
-\frac{1}{a} \ln \frac{(U)_{1}(\Delta t)_{2}}{(U)_{2}(\Delta t)_{1}} \text { and }
$$

$$
\frac{1}{a} \ln \frac{U_{0_{1}} \Delta t_{2}}{U_{0_{2}} \Delta t_{1}}=\frac{\Delta t_{2}-\Delta t_{1}}{Q} A_{0}
$$

in which, $U_{0_{1}}=a+b\left(t_{h}-t_{c}\right)_{1} ; U_{0_{2}}=a+b\left(t_{h}-t_{c}\right)_{2}$

$$
=a+b \Delta t_{1} \quad ; U_{0_{2}}=a+b \Delta t_{2}
$$

$$
\begin{aligned}
& U_{0_{1}} \Delta t_{2}=a \Delta t_{2}+b \Delta t_{1} \Delta t_{2} \\
& U_{0_{2}} \Delta t_{1}=a \Delta t_{1}+b \Delta t_{1} \Delta t_{2}
\end{aligned}
$$

subtract
$U_{0_{1}} \Delta t_{2}-U_{0_{2}} \Delta t_{1}=a\left(\Delta t_{2}+\Delta t_{1}\right)$

$$
\frac{U_{0_{1}} \Delta t_{2}-U_{0_{2}} \Delta t_{1}}{\Delta t_{2}+\Delta t_{1}}=a
$$

$$
\frac{\Delta t_{2}-\Delta t_{1}}{U_{\mathrm{o}_{1} \Delta t_{2}}-\mathrm{U}_{\mathrm{o}_{2}} \Delta \mathrm{t}_{1}} \ln \frac{\mathrm{U}_{\mathrm{o}_{1}} \Delta t_{2}}{\mathrm{U}_{\mathrm{o}_{2}} \Delta \mathrm{t}_{1}}=\frac{\Delta \mathrm{t}_{2}-\Delta \mathrm{t}_{1}}{\mathrm{Q}} A_{0}
$$

$$
Q=\frac{U_{0_{1}} \Delta t_{2}-U_{0_{2}} \Delta t_{1}}{\ln \frac{U_{0_{1}} \Delta t_{2}}{U_{0_{2}} \Delta t_{1}}} A_{0}
$$

shown - 1 shell pass - 1 tube concurrent heat exchanger

Benefits - cost, space, pressure drop

consists of bundle of tubes through which one fluid passes the other fluid flows through the shell. Baffles are used to direct the flow of one shell fluid to improve heat transfer.

1) If one fluid fouls - it should be routed through tubes.
2) If one fluid is at high pressure-should go through tubes to avoid cost of high pressure
shell.
3) Corrosive material should go through tubes to avoid costs associated with shell construction.
4) More viscous fluid should be directed through shell ΔP is low.
5) If major resist:lite is in tube side, a 2 tube pass, one shell pass may be better.

In the 1-D analysis we get a similar result to the double-pipe exchanger

$$
Q=U_{0} A_{0}\left[\frac{\left(t_{2, i}-t_{2,0}\right)-\left(t_{1, i}-t_{i, 0}\right)}{\ln \frac{t_{2, i}-t_{2,0}}{t_{1, i}-t_{1,0}}}\right]
$$

where A_{0} is the total outside area of all the tubes, and U_{0} is the overall heat transfer coefficient.
How to evaluate U_{0} ? — The tube side fluid is no problem, but to evaluate shell side.

Heat transfer coefficient for flow past tube bundles

s_{t} - transverse pitch
s_{ℓ} — longitudinal pitch
if $\gtrsim 10$ rows of tubes in bundle and
$\gtrsim 10$ tubes in each row, neglect entrance, end effects
and

$$
\begin{array}{r}
N u=F\left(\operatorname{Re}, \operatorname{Pr}, \mu_{b} / \mu_{0}, S_{\ell}, S_{t}\right) \\
S_{\ell}=s_{\ell} / D \quad S_{t}=s_{t} / D
\end{array}
$$

experimental correlations show that

$$
N u=\left(0.4 N_{\mathrm{Re}}^{1 / 2}+0.2 N_{\mathrm{Re}}^{2 / 3}\right) N_{\mathrm{Pr}}^{0.4}\left(\frac{\mu_{b}}{\mu_{0}}\right)^{.14}
$$

$$
\begin{array}{ll}
N_{\mathrm{Re}}= & \frac{D_{p} G}{\mu_{b}(1-\varepsilon)} \\
& \operatorname{Pr}=\frac{C p}{\mu_{b} k_{b}} \\
N_{N u}= & \frac{h D_{p}}{k_{b}}\left(\frac{\varepsilon}{(1-\varepsilon)}\right) \\
& \text { range } \\
& N_{\mathrm{Re}}=1-40,000 \quad \\
& \operatorname{Pr} \sim .7-800
\end{array}
$$

ε - void fraction $\equiv \frac{\text { volume of tubes }}{\text { total shell volume }}$
$a_{v}-\frac{\text { area for heat transfer }}{\text { unit volume }}$
D_{p}-hydraulic radius= 3/2 D tube

To evaluate $h_{\text {outside }}$ using this tube bundle correlation, we need to estimate the average mass flow rate G.

If the diameter of the shell is D_{s} and the distance between baffles is L_{b}, then an average mass velocity is

$$
G_{a v}=\frac{4 \dot{m}}{\pi D_{s} L_{b}}
$$

\dot{n} — mass flow rate of shell fluid and the Reynolds number is

$$
\operatorname{Re}=\frac{D_{p} G_{a v}}{\mu(1-\varepsilon)}=\frac{4 D_{p} \dot{m}}{\pi \mu D_{s} L_{b}(1-\varepsilon)}
$$

ε - void fraction and in terms of parameters

$$
\begin{aligned}
& \operatorname{Re}=\frac{6 D \dot{m}}{\pi \mu D_{s} L_{b}(1-\varepsilon)} \\
& N u=\left(.4 N^{1 / 2}+.2 N^{2 / 3}\right) \operatorname{Pr}^{4}\left(\frac{\mu_{b}}{\mu_{0}}\right)^{.14}
\end{aligned}
$$

Fouling of heat transfer surfaces:
One of the most difficult aspects of heat exchange design is the reduction in heat transfer rates due to deposition of "scale"-insoluble inorganic compounds-on the tube wall. The magnitude depends on the nature and thickness. It is usually reported in terms of a film heat transfer coefficient for the scale which is referred to as the fouling factor $h_{s}=$ \{film heat transfer for scale $\}$
$\frac{1}{h_{s}}=$ fouling factor
to determine U_{0}, we assume all the resistance add in series:
$\frac{1}{U_{0}}=\frac{1}{h_{I}}=\frac{D_{0}}{D_{i}}+\frac{1}{h_{s, i}}\left(\frac{D_{0}}{D_{i}}\right)+\frac{D_{0}}{2 k} \ln \frac{D_{0}}{D_{i}}+\frac{1}{h_{s, 0}}+\frac{1}{h_{I I}}$
As the scale increases, the overall U_{0} decreases, leading to poor performance and cleaning becomes necessary.

Observations

1. wire temperature rises smoothly to $\sim 300^{\circ}$
2. temperature jumps to $\sim 1800^{\circ}$
3. decrease heat flux to ${ }^{\circ} 570$ wire temp at a much lower heat flux
4. jumps back down in temperature

Explanation

Different types of boiling

Nucleate Boiling

high heat transfer rate

Transition

intermediate unstable

Film Boiling

low heat transfer rate

Nucleate boiling occurs directly at solid surface
Need to nucleate bubbles of gas somehow, but interface costs energy.

$$
\begin{aligned}
& \Delta P=2 H \sigma=\frac{2 \sigma}{R} \\
& H=\text { mean curvature of interface }=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
& \text { capillary rise in a tube: } \rho_{\ell} g h-\rho_{r} g h=\frac{2 \sigma}{R}
\end{aligned}
$$

Note that as $R \rightarrow 0, \Delta P \rightarrow \infty$ and to achieve the excess pressure, we need to achieve superheat.

$\xrightarrow{\text { extreme }}$	
case	homogeneous nucleation — bubbles of gas form spontaneously by molecular aggregation
most heterogeneous nucleation — bubbles form at existing gas pockets, dust, \rightarrow common dirt, etc.	

Surface irregularities also are heterogeneous nuclei

Film Boiling

Heat flux causes sufficient boiling that a vapor film covers surface, slows down heat transfer.

$$
\begin{aligned}
& k_{\text {water }}=.35 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}} \\
& k_{\text {vapor }}=.0183 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}} \\
& \text { at least a factor of } 20!
\end{aligned}
$$

solid \mid vapor \mid liquid

Boiling Summary

1) Heat flux is highest when change of phase occurs
2) Nucleate Boiling - highest rates, bubbles form directly at surface
3) Film Boiling - intermediate rates, bubbles form at vapor-liquid interface

Condensation

Condensation is used to heat solids in the same way boiling is often used to cool solids.

Similarly also, these are two types of condensation:

1) Dropwise \leftrightarrow Nucleate
2) Film $\quad \leftrightarrow$ Film
3) Dropwise - condensate doesn't wet surface. forms drops
4) Film -condensate wets surface, forms liquid film
