
Coupled Mass Transport and Reaction in LPCVD ReactorsCoupled Mass Transport and Reaction in LPCVD Reactors

Dilute A in B
e.g., SiH4 in H2
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Continuity Continuity EqnEqn: Convection: Convection--DiffusionDiffusion--Reaction Reaction EqnsEqns

Assumptions
! Dilute species i in major carrier gas (e.g., H2) i=SiH4

! Isothermal

! Constant Di and density

Assume stagnant in 
the intrawafer 
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~ 0

No rxn in the gas

Steady state
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Equations and Boundary Conditions for the Equations and Boundary Conditions for the 
intrawafer intrawafer regionregion
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rs = surface reaction rate 
(net loss rate of SiH4); 
related to the deposition 
rate

! If rs is linear in c then there is an analytic solution

! If rs is nonlinear we have to seek numerical solution



Approximate solution Approximate solution –– “Fin Approximation”“Fin Approximation”

! Take rs=kc & average over z direction
! Averaging over the small dimension (z) is called the “fin 

approximation”: an approximation which is very good for 2-D 
regions with high aspect ratio (R/∆)
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Nondimensionalization Nondimensionalization & Solution& Solution
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Φ is the Thiele Modulus
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Concentration profile in the Concentration profile in the intrawafer intrawafer regionregion
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Using θ=1 at ξ=1 ⇒ 1 = AIo(Φ)

! as Φ → 0 uniformity gets better 
and C increases; reaction 
limited; diffusion faster than rxn

! as Φ >>1 uniformity degrades 
and C decreases; diffusion 
limited; rxn faster than diffusion
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Quantifying UniformityQuantifying Uniformity
η = “Uniformity Index” = throughoutccifratedeposition
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Growth Rate distribution as a function of wafer spacingGrowth Rate distribution as a function of wafer spacing



Growth Rate distribution as a function of Growth Rate distribution as a function of ΦΦΦΦΦΦΦΦ
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Annular RegionAnnular Region
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rr--averaged averaged EqnsEqns. in the Annular Region. in the Annular Region
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! We are mostly interested in wafer-to-wafer changes (z variation) and do 
not care about profiles in the annulus.

! We will average over the r dimension and obtain a single r-averaged 
equation for C(z) where
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Look how boundary conditions in r end up in the differential equLook how boundary conditions in r end up in the differential equation ation 
for C(z) as if they are in the gas phase (i.e, the domain of diffor C(z) as if they are in the gas phase (i.e, the domain of diff f eqeq.); surface .); surface 

reactions at radial walls appear as if they are gas phase reactireactions at radial walls appear as if they are gas phase reactionsons
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Dimensional analysisDimensional analysis
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Boundary conditions and SolutionBoundary conditions and Solution
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Limiting Cases: PFR limitLimiting Cases: PFR limit

! Pe→∞ (i.e., D →0 or uz →∞)

small diffusion rate compared to convection

⇒ Plug flow reactor (PFR) limit 
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Limiting Cases: PFR limitLimiting Cases: PFR limit
! Another way of seeing this is to look at Pe→∞ of the 

differential equation and boundary condition at ζ=0
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Limiting Cases: CSTR limitLimiting Cases: CSTR limit

! Pe→0 (i.e., D →∞ or uz →0)

small flow rate (convection) compared to diffusion

⇒ Continuous stirred tank reactor (CSTR) limit 
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Limiting Cases: CSTR limitLimiting Cases: CSTR limit
! To find the concentration we average over z-direction too
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WaferWafer--toto--wafer uniformitywafer uniformity
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Uniformity index often defined as

! U=0  : good uniformity
! U × 100 = % is variance with respect to average
! As U increases uniformity degrades
! For fixed Da* as Pe↑ U also ↑
! Pe ↑ means D ↓
! Since D ~ 1/P ⇒ lower P ⇒ better uniformity
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Deposition RateDeposition Rate

!Often we are interested in deposition rate, RD in 
thickness/time, e.g.,  Å/s, Å/min, nm/s, nm/min, µm/min, etc.
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