Coupled Mass Transport and Reaction in LPCVD Reactors

Continuity Eqn: Convection-Diffusion-Reaction Eqns

Assumptions

$>$ Dilute species i in major carrier gas (e.g., H_{2}) $\mathrm{i}=\mathrm{SiH}_{4}$
$>$ Isothermal
$>$ Constant D_{i} and density

Equations and Boundary Conditions for the intrawafer region

$$
\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial c}{\partial r}+\frac{\partial^{2} c}{\partial z^{2}}=0
$$

$$
\begin{array}{lll}
\hline \frac{\partial c}{\partial r}=0 & @ & r=0 \\
c=c_{b} & @ & r=R_{w} \\
D \frac{\partial c}{\partial z}=r_{s} & @ & z=-\Delta / 2 \\
D \frac{\partial c}{\partial z}=-r_{s} & @ & z=\Delta / 2
\end{array}
$$

$\mathrm{r}_{\mathrm{s}}=$ surface reaction rate (net loss rate of SiH_{4}); related to the deposition rate
$>$ If r_{s} is linear in c then there is an analytic solution
$>$ If r_{s} is nonlinear we have to seek numerical solution

Approximate solution - "Fin Approximation"

Take $\mathrm{r}_{\mathrm{s}}=\mathrm{kc}$ \& average over z direction
$>$ Averaging over the small dimension (z) is called the "fin approximation": an approximation which is very good for 2-D regions with high aspect ratio (R / Δ)

$$
\begin{aligned}
& \int_{-\Delta / 2}^{\Delta / 2} \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial c}{\partial r} d z+\int_{-\Delta / 2}^{\Delta / 2} \frac{\partial^{2} c}{\partial z^{2}} d z=0 \\
& \Delta \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial C}{\partial r}+\left.\frac{\partial C}{\partial z}\right|_{z=\Delta / 2}-\left.\frac{\partial C}{\partial z}\right|_{z=-\Delta / 2}= \\
& =0 \\
& \sqrt{\text { let } \quad C(r)=\frac{\int_{-\Delta / 2}^{\Delta / 2} c(r, z) d z}{\int_{-\Delta / 2}^{\Delta / 2} d z}=\frac{1}{\Delta} \int_{-\Delta / 2}^{\Delta / 2} c(r, z) d z} \\
& \Delta \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial C}{\partial r}+\left(-\frac{k C}{D}-\frac{k C}{D}\right)=0 \\
& D \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial C}{\partial r}-\frac{2}{\Delta} k C=0 \\
& \frac{2}{\Delta}=\frac{2 \pi R_{w}^{2}}{\Delta \pi R_{w}^{2}}=\frac{\text { surface area }}{\text { volume }}
\end{aligned}
$$

Nondimensionalization \& Solution

$$
\begin{aligned}
& \xi=\frac{r}{R_{w}} \quad \theta=\frac{C}{c_{b}} \quad \longrightarrow \frac{\partial^{2} \theta}{\partial \xi^{2}}+\frac{1}{\xi} \frac{\partial \theta}{\partial \xi}-\Phi^{2} \theta=0 \\
& \frac{1}{\xi} \frac{\partial}{\partial \xi} \xi \frac{\partial \theta}{\partial \xi}=\frac{2 k R_{w}^{2}}{D \Delta} \\
& \Phi^{2} 2 k R_{w}^{2} \quad \Phi \text { is the Thieve Modulus } \\
& =\frac{\text { reaction rate }}{\text { diffusion rate }}=\frac{\text { diffusion time scale }}{\text { reaction time scale }}
\end{aligned}
$$

$$
\theta=A I_{o}(\Phi \xi)+B K_{o}(\Phi \xi)
$$

Zero order Bessel functions of the $2^{\text {nd }}$ kind

Concentration profile in the intrawafer region

K_{o} has logarithmic singularity at $\xi=0 \Rightarrow \mathrm{~B}=0$
Using $\theta=1$ at $\xi=1 \Rightarrow 1=\mathrm{AI}_{0}(\Phi)$

$$
\theta=\frac{I_{o}(\Phi \xi)}{I_{o}(\Phi)}
$$

$>$ as $\Phi \rightarrow 0$ uniformity gets better and C increases; reaction
limited; diffusion faster than rxn
$>$ as $\Phi \gg 1$ uniformity degrades and C decreases; diffusion limited; rxn faster than diffusion

$$
\Phi=\frac{\text { reaction rate }}{\text { diffusion rate }}
$$

Quantifying Uniformity

$$
\eta=\text { 'Uniformity Index" }=\frac{\text { actual deposition rate }}{\text { deposition rate if } c=c_{b} \text { throughout }}
$$

$$
\eta=\frac{\left.2 \pi R_{w} \Delta \quad D \frac{d C}{d r}\right|_{r=R_{w}}}{2 k_{s} c_{b} \pi R_{w}^{2}}
$$

$$
\left|\frac{d C}{d r}\right|_{r=R_{w}}=\left.\frac{C_{b}}{R_{w}} \frac{d \theta}{d \xi}\right|_{\xi=1}=\frac{C_{b} \Phi}{R_{w}} \frac{\left.I_{1}(\Phi \xi)\right|_{\xi=1}}{I_{o}(\Phi)}=\frac{C_{b} \Phi}{R_{w}} \frac{I_{1}(\Phi)}{I_{o}(\Phi)}
$$

$$
\eta=\frac{2 \pi R_{w} \Delta D c_{b} \Phi I_{1}(\Phi)}{2 k_{s} c_{b} \pi R_{w}^{3} I_{o}(\Phi)} \longrightarrow \eta=\frac{2 I_{1}(\Phi)}{\Phi I_{o}(\Phi)}=f(\Phi)
$$

$\Phi \ll 1 \Rightarrow \eta \rightarrow 1 \Rightarrow$ uniform deposition (rxn limited)
$\Phi \gg 1 \Rightarrow \eta \rightarrow 0 \Rightarrow$ nonuniform deposition (diffusion limited)

Growth Rate distribution as a function of wafer spacing

Growth Rate distribution as a function of Φ

A	$\Phi \ll 1$	\Rightarrow	$\eta \rightarrow 1$	\Rightarrow	uniform	deposition (rxn limited)
B	$\Phi \gg 1$	\Rightarrow	$\eta \rightarrow 0$	\Rightarrow	nonuniform deposition	(diffusion

Annular Region

r-averaged Eqns. in the Annular Region

$$
D\left[\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial c}{\partial r}+\frac{\partial^{2} c}{\partial z^{2}}\right]-\not u_{r} \frac{\partial c}{\partial r}-u_{z} \frac{\partial c}{\partial z}=0
$$

$>$ We are mostly interested in wafer-to-wafer changes (z variation) and do not care about profiles in the annulus.
$>$ We will average over the r dimension and obtain a single r -averaged equation for $\mathrm{C}(\mathrm{z})$ where

$$
\text { let } C(z)=\frac{\int_{R_{w}}^{R_{1}, 2 \pi}}{} \int_{0}^{2 \pi} r(r, z) d r d \theta \quad \int_{R_{w}}^{R_{2} 2 \pi} \int_{0}^{2 \pi} r d r d \theta \quad \frac{2}{\left(R_{t}^{2}-R_{w}^{2}\right)} \int_{R_{w}}^{R_{1}} r c(r, z) d r \quad \int_{R_{w}}=\frac{\int_{R_{w}}^{R_{1}} \int_{0}^{2 \pi} r u_{z}(r) d r d \theta}{\int_{0}^{R_{2} 2 \pi} r d r d \theta}=\frac{2}{\left(R_{t}^{2}-R_{w}^{2}\right)} \int_{R_{w}}^{R_{r}} r u_{z} d r
$$

Look how boundary conditions in r end up in the differential equation for $\mathbf{C}(\mathrm{z})$ as if they are in the gas phase (i.e, the domain of diff eq.); surface reactions at radial walls appear as if they are gas phase reactions
$D \int_{R_{w}}^{R_{t}} \frac{\partial}{\partial r} r \frac{\partial c}{\partial r} d r+\int_{R_{w}}^{R_{r}} \frac{\partial^{2} c}{\partial z^{2}} r d r-\int_{R_{w}}^{R_{t}} r u_{z} \frac{\partial c}{\partial z} d r=0$
$D\left[r \frac{\partial c}{\partial r}\right]_{r=R_{w}}^{r=R_{t}}+\frac{\left(R_{t}^{2}-R_{w}^{2}\right)}{2} D \frac{d^{2} C}{d z^{2}}-\frac{\left(R_{t}^{2}-R_{w}^{2}\right)}{2} \bar{u}_{z} \frac{d C}{d z}=0$
$-\left(R_{t} k_{s} C+\eta \frac{k_{s} C R_{w}^{2}}{\Delta}\right)+\frac{\left(R_{t}^{2}-R_{w}^{2}\right)}{2} D \frac{d^{2} C}{d z^{2}}-\frac{\left(R_{t}^{2}-R_{w}^{2}\right)}{2} \bar{u}_{z} \frac{d C}{d z}=0$
$D \frac{d^{2} C}{d z^{2}}-\bar{u}_{z} \frac{d C}{d z}-\left[\frac{2 k_{s} R_{t}}{\left(R_{t}^{2}-R_{w}^{2}\right)}+2 \eta \frac{k_{s} R_{w}^{2}}{\Delta\left(R_{t}^{2}-R_{w}^{2}\right)}\right] C=0$
$\stackrel{\uparrow}{\text { Looks like }} \rightarrow D \frac{d^{2} c}{d z^{2}}-u_{z} \frac{d c}{d z}+R_{g a s}=0$

Dimensional analysis

$$
\Theta=\frac{C}{C_{b}} \quad \zeta=\frac{z}{L}
$$

$$
\frac{D}{\bar{u}_{z} L} \frac{d^{2} \Theta}{d \zeta^{2}}-\frac{d \Theta}{d \zeta}-\left[\frac{2 k_{s} R_{t} L}{\bar{u}_{z}\left(R_{t}^{2}-R_{w}^{2}\right)}+\eta \frac{2 k_{s} R_{w}^{2} L}{\Delta \bar{u}_{z}\left(R_{t}^{2}-R_{w}^{2}\right)}\right] \Theta=0
$$

$P e=\frac{\bar{u}_{z} L}{D}=\frac{\text { convective transport }}{\text { diffusive transport }} \quad D a_{1}=\frac{2 k_{s} R_{L} L}{\bar{u}_{z}\left(R_{t}^{2}-R_{w}^{2}\right)}=\frac{\text { reaction rate (deposition on walls })}{\text { convection rate }}$

$$
\begin{gathered}
D a_{2}=\frac{2 k_{s} R_{2}^{2} L}{\Delta \bar{u}_{z}\left(R_{t}^{2}-R_{w}^{2}\right)}=\frac{\text { reaction rate (deposition on wafers })}{\text { convection rate }} \\
\frac{1}{P e} \frac{d^{2} \Theta}{d \zeta^{2}}-\frac{d \Theta}{d \zeta}-\left[D a_{1}+\eta D a_{2}\right] \Theta=0
\end{gathered}
$$

Boundary conditions and Solution

$$
\begin{aligned}
& \frac{d \Theta}{d \zeta}=0 \quad @ \quad \zeta=1 \\
& -\frac{1}{P e} \frac{d \Theta}{d \zeta}=(1-\Theta) \quad @ \quad \zeta=0
\end{aligned}
$$

$$
\Theta=\frac{2[(1+\beta) \exp \{M(1+\beta)+M(1-\beta) \zeta\}-(1-\beta) \exp \{M(1+\beta) \zeta+M(1-\beta)\}}{(1+\beta)^{2} \exp \{M(1+\beta)\}-(1-\beta)^{2} \exp \{M(1-\beta)\}}
$$

$$
\text { where } \beta=\sqrt{1+\frac{4\left(D a_{1}+\eta D a_{2}\right)}{P e}} \quad \text { and } \quad M=\frac{P e}{2}
$$

Dankwertz "continuous flow systems" Chemical Engineering Science 2 (1), 1 (1953).

Limiting Cases: PFR limit

$\Rightarrow \mathrm{Pe} \rightarrow \infty$ (i.e., $\mathrm{D} \rightarrow 0$ or $\mathrm{u}_{\mathrm{z}} \rightarrow \infty$)
small diffusion rate compared to convection
\Rightarrow Plug flow reactor (PFR) limit

$$
\beta=\sqrt{1+\frac{4\left(D a_{1}+\eta D a_{2}\right)}{P e}} \rightarrow 1 \quad \text { and } \quad M \rightarrow \infty \quad D a^{*}=\left(D a_{1}+\eta D a_{2}\right)
$$

$$
M(1-\beta)=\frac{1}{2} P e\left[1-\sqrt{1+\frac{4\left(D a_{1}+\eta D a_{2}\right)}{P e}}\right]=-\frac{2 D a^{*}}{\sqrt{1+\frac{4 D a^{*}}{P e}}}=-D a^{*}
$$

$$
\lim _{P e \rightarrow \infty} \Theta=e^{-D a^{*} \xi}
$$

Limiting Cases: PFR limit

$>$ Another way of seeing this is to look at $\mathrm{Pe} \rightarrow \infty$ of the differential equation and boundary condition at $\zeta=0$

$$
\frac{1}{P e} \frac{d^{2} \Theta}{d \zeta^{2}}-\frac{d \Theta}{d \zeta}-\left[D a_{1}+\eta D a_{2}\right] \Theta=0
$$

$$
\begin{aligned}
& -\frac{1}{\text { Pe }} \frac{d \Theta}{d \zeta}=(1-\Theta) \quad @ \quad \zeta=0 \\
& \text { becomes } \quad \Theta=1 \quad @ \quad \zeta=0
\end{aligned}
$$

$$
\frac{d \Theta}{d \zeta}=-D a^{*} \Theta
$$

$$
\Theta=e^{-D a * \zeta}
$$

Limiting Cases: CSTR limit

$>\mathrm{Pe} \rightarrow 0$ (i.e., $\mathrm{D} \rightarrow \infty$ or $\mathrm{u}_{\mathrm{z}} \rightarrow 0$)
small flow rate (convection) compared to diffusion
\Rightarrow Continuous stirred tank reactor (CSTR) limit

$$
\left[\begin{array}{l}
\frac{d^{2} \Theta}{d \zeta^{2}}-P e\left\{\frac{d \Theta}{d \zeta}-D a * \Theta\right\}=0 \\
\text { as } P e \rightarrow 0 \quad \frac{d^{2} \Theta}{d \zeta^{2}}=0
\end{array}\right] \begin{aligned}
& \frac{d \Theta}{d \zeta}=0 \quad @ \quad \zeta=1 \\
& -\frac{1}{P e} \frac{d \Theta}{d \zeta}=(1-\Theta) \quad @ \quad \zeta=0 \\
& \text { as } P e \rightarrow 0 \quad \frac{d \Theta}{d \zeta}=0 \quad @ \quad \zeta=0
\end{aligned}
$$

$$
\lim _{P e \rightarrow 0} \Theta=\text { constant }
$$

Limiting Cases: CSTR limit

$>$ To find the concentration we average over z-direction too

Wafer-to-wafer uniformity

Uniformity index often defined as

$$
U=\frac{R_{\max }-R_{\min }}{R_{\text {avg }}}=\frac{C_{\max }-C_{\min }}{C_{\text {avg }}}=\frac{\Theta_{\max }-\Theta_{\min }}{\Theta_{\text {avg }}}
$$

$>\mathrm{U}=0$: good uniformity
$>\mathrm{U} \times 100=\%$ is variance with respect to average
$>$ As U increases uniformity degrades
$>$ For fixed Da^{*} as $\mathrm{Pe} \uparrow \mathrm{U}$ also \uparrow
$>\mathrm{Pe} \uparrow$ means $\mathrm{D} \downarrow$
\Rightarrow Since $\mathrm{D} \sim 1 / \mathrm{P} \Rightarrow$ lower $\mathrm{P} \Rightarrow$ better uniformity

$$
P e=\frac{\bar{u}_{z} L}{D}=\frac{\text { convective transport }}{\text { diffusive transport }}
$$

Deposition Rate

$>$ Often we are interested in deposition rate, R_{D} in thickness/time, e.g., $\AA / \mathrm{s}, \AA / \mathrm{min}, \mathrm{nm} / \mathrm{s}, \mathrm{nm} / \mathrm{min}, \mu \mathrm{m} / \mathrm{min}$, etc.
deposition flux $\left(\# / \mathrm{cm}^{2} s\right) \times$ film area $\left(\mathrm{cm}^{2}\right)=$ film density $\left(\# / \mathrm{cm}^{3}\right) \times \dot{V}\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$

$$
r_{s} A=N_{f} A R_{D}=N_{f} A \frac{d h}{d t}
$$

$$
R_{D}=\frac{r_{s}}{N_{f}}=\frac{k c}{N_{f}}
$$

$$
N_{f}=\frac{\rho_{f}}{M_{w f}} N_{\text {Avogadro }}
$$

