Probing Local Structures of Siliceous Zeolite Frameworks by Solid-State NMR and First-Principles Calculations of ²⁹Si-O-²⁹Si Scalar Couplings^a

Sylvian Cadars,^a Darren H. Brouwer,^b and Bradley F. Chmelka^{a,b}

- ^a Department of Chemical Engineering, University of California, Santa Barbara, California 93106, U.S.A.
- ^b Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa Ontario, K1A 0R6, Canada.

RECEIVED DATE: 21 June 2009

ERRATUM

In Table 3, columns 5 and 6 of our manuscript Cadars, *et al.*, *Phys. Chem. Chem. Phys.*, *11*, 1825 (2009), the ${}^{2}J({}^{29}Si-O-{}^{29}Si)$ coupling constants calculated for the DFT-optimized structures of ZSM-12 were mislabeled and out of sequence with respect to those of the ${}^{29}Si-O-{}^{29}Si$ site-pairs listed in column 1. Consequently, Table 3 has been revised to correct these labeling discrepancies and should read as follows:

^b to whom correspondence should be addressed: Prof. Bradley F. Chmelka
Department of Chemical Engineering
University of California
Santa Barbara, California 93106, U. S. A.
Phone: + 1-805-893-3673
Fax: + 1-805-893-4731
E-mail: bradc@engineering.ucsb.edu

		$J_{ m calc}$ (Hz) ^b			
Site Pair	J _{exp} (Hz) ^a	PXRD	NMR-refined	DFT-opt from PXRD	DFT-opt from NMR-refined
3-1	10	11.4	9.2	6.8	6.9
3-7	10	14.8	9.3	8.5	7.9
3-5	14	13.1	14.1	11.8	11.2
6-7	19	14.8	13.6	13.6	12.3
4-5	15	13.0	11.9	11.1	10.6
4-2	12	12.5	12.7	9.5	9.7
6-5	11	14.5	13.0	9.3	9.4
1-2	16	15.3	13.2	12.0	11.7
	u ^c	1.05	1.13	1.38	1.58
	v (Hz) ^c	-1.1	-0.4	-0.9	-2.5
	R^2	0.25	0.45	0.90	0.84
	$\chi^{2 d}$	14.6	13.0	21.4	27.5

Table 3. Experimental and calculated ${}^{2}J({}^{29}\text{Si-O-}{}^{29}\text{Si})$ coupling constants measured for siliceous zeolite ZSM-12.

^a *J*-coupling values are estimated from the 2D deconvolution of the refocused-INADEQUATE ${}^{29}Si{}^{29}Si{}^{29}Si{}$ spectrum shown in Fig. 5, with estimated uncertainties of ± 2 Hz.

^b Values calculated for SiH-terminated clusters extracted from the powder-XRD and CSA-refined structures (3rd and 4th columns, respectively), using the cc-PV5Z basis set on coupled ²⁹Si atoms and 6-31G* basis sets with added (3df, 3pd) diffuse functions on other atoms (so-called "cc-PV5Z / diffuse" LDBS).

^c From best fits to the expression: $J_{exp} = u * J_{calc} + v$.

^d Calculated using eqn (1)

The entries in columns 1, 2, 3, and 4, the entries in the rows of all columns associated with the calculated u, v, R^2 , χ^2 values, and the footnotes are correct and remain unchanged. In addition, the DFT calculations and results summarized in Figure 6 are correctly labeled, so that the subsequent analyses, discussions, and conclusions of the paper remain unaffected and unchanged.