Frequency Response Analysis

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, $x(t)=A \sin \omega t$ is:

$$
\begin{equation*}
y(t)=\frac{K A}{\omega^{2} \tau^{2}+1}\left(\omega \tau e^{-t / \tau}-\omega \tau \cos \omega t+\sin \omega t\right) \tag{5-25}
\end{equation*}
$$

Note that $y(t)$ and $x(t)$ are in deviation form. The long-time response, $y_{l}(t)$, can be written as:

$$
\begin{equation*}
y_{\ell}(t)=\frac{K A}{\sqrt{\omega^{2} \tau^{2}+1}} \sin (\omega t+\varphi) \text { for } t \rightarrow \infty \tag{13-1}
\end{equation*}
$$

where:

$$
\varphi=-\tan ^{-1}(\omega \tau)
$$

Time, t

Figure 13.1 Attenuation and time shift between input and output sine waves $(K=1)$. The phase angle φ of the output signal is given by $\varphi=-$ Time shift $/ P \times 360^{\circ}$, where Δt is the (period) shift and P is the period of oscillation.

Frequency Response Characteristics of a First-Order Process

For $x(t)=A \sin \omega t, y_{\ell}(t)=\hat{A} \sin (\omega t+\varphi)$ as $t \rightarrow \infty$ where :

$$
\hat{A}=\frac{K A}{\sqrt{\omega^{2} \tau^{2}+1}} \quad \text { and } \quad \varphi=-\tan ^{-1}(\omega \tau)
$$

1. The output signal is a sinusoid that has the same frequency, ω, as the input.signal, $x(t)=A \sin \omega t$.
2. The amplitude of the output signal, \hat{A}, is a function of the frequency ω and the input amplitude, A :

$$
\begin{equation*}
\hat{A}=\frac{K A}{\sqrt{\omega^{2} \tau^{2}+1}} \tag{13-2}
\end{equation*}
$$

3. The output has a phase shift, φ, relative to the input. The amount of phase shift depends on ω.

Dividing both sides of (13-2) by the input signal amplitude A yields the amplitude ratio (AR)

$$
\begin{equation*}
\mathrm{AR}=\frac{\hat{A}}{A}=\frac{K}{\sqrt{\omega^{2} \tau^{2}+1}} \tag{13-3a}
\end{equation*}
$$

which can, in turn, be divided by the process gain to yield the normalized amplitude ratio $\left(\mathrm{AR}_{\mathrm{N}}\right)$

$$
\begin{equation*}
\mathrm{AR}_{\mathrm{N}}=\frac{1}{\sqrt{\omega^{2} \tau^{2}+1}} \tag{13-3b}
\end{equation*}
$$

Shortcut Method for Finding the Frequency Response

The shortcut method consists of the following steps:

Step 1. Set $s=j \omega$ in $G(s)$ to obtain $G(j \omega)$.
Step 2. Rationalize $G(j \omega)$; We want to express it in the form.

$$
G(j \omega)=R+j I
$$

where R and I are functions of ω. Simplify $G(j \omega)$ by multiplying the numerator and denominator by the complex conjugate of the denominator.

Step 3. The amplitude ratio and phase angle of $G(s)$ are given

$$
\text { by: } \begin{array}{r}
\mathrm{AR}=\sqrt{R^{2}+I^{2}} \\
\varphi=\tan ^{-1}(I / R)
\end{array}
$$

Example 13.1

Find the frequency response of a first-order system, with

$$
\begin{equation*}
G(s)=\frac{1}{\tau s+1} \tag{13-16}
\end{equation*}
$$

Solution

First, substitute $s=j \omega$ in the transfer function

$$
\begin{equation*}
G(j \omega)=\frac{1}{\tau j \omega+1}=\frac{1}{j \omega \tau+1} \tag{13-17}
\end{equation*}
$$

Then multiply both numerator and denominator by the complex conjugate of the denominator, that is, $-j \omega \tau+1$

$$
\begin{align*}
G(j \omega) & =\frac{-j \omega \tau+1}{(j \omega \tau+1)(-j \omega \tau+1)}=\frac{-j \omega \tau+1}{\omega^{2} \tau^{2}+1} \\
& =\frac{1}{\omega^{2} \tau^{2}+1}+j \frac{(-\omega \tau)}{\omega^{2} \tau^{2}+1}=R+j I \tag{13-18}
\end{align*}
$$

where:

$$
\begin{align*}
& R=\frac{1}{\omega^{2} \tau^{2}+1} \tag{13-19a}\\
& I=\frac{-\omega \tau}{\omega^{2} \tau^{2}+1} \tag{13-19b}
\end{align*}
$$

From Step 3 of the Shortcut Method,

$$
\mathrm{AR}=\sqrt{R^{2}+I^{2}}=\sqrt{\left(\frac{1}{\omega^{2} \tau^{2}+1}\right)^{2}+\left(\frac{-\omega \tau}{\omega^{2} \tau^{2}+1}\right)^{2}}
$$

or

$$
\begin{equation*}
\mathrm{AR}=\sqrt{\frac{\left(1+\omega^{2} \tau^{2}\right)}{\left(\omega^{2} \tau^{2}+1\right)^{2}}}=\frac{1}{\sqrt{\omega^{2} \tau^{2}+1}} \tag{13-20a}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\varphi=\tan ^{-1}\left(\frac{I}{R}\right)=\tan ^{-1}(-\omega \tau)=-\tan ^{-1}(\omega \tau) \tag{13-20b}
\end{equation*}
$$

Complex Transfer Functions

Consider a complex transfer $G(s)$,

$$
\begin{equation*}
G(s)=\frac{G_{a}(s) G_{b}(s) G_{c}(s) \cdots}{G_{1}(s) G_{2}(s) G_{3}(s) \cdots} \tag{13-22}
\end{equation*}
$$

Substitute $s=j \omega$,

$$
\begin{equation*}
G(j \omega)=\frac{G_{a}(j \omega) G_{b}(j \omega) G_{c}(j \omega) \cdots}{G_{1}(j \omega) G_{2}(j \omega) G_{3}(j \omega) \cdots} \tag{13-23}
\end{equation*}
$$

From complex variable theory, we can express the magnitude and angle of $G(j \omega)$ as follows:

$$
\begin{align*}
& |G(j \omega)|=\frac{\left|G_{a}(j \omega)\right|\left|G_{b}(j \omega)\right|\left|G_{c}(j \omega)\right| \cdots}{\left|G_{1}(j \omega)\right|\left|G_{2}(j \omega)\right|\left|G_{3}(j \omega)\right| \cdots} \\
\angle G(j \omega)= & \angle G_{a}(j \omega)+\angle G_{b}(j \omega)+\angle G_{c}(j \omega)+\cdots \\
& -\left[\angle G_{1}(j \omega)+\angle G_{2}(j \omega)+\angle G_{3}(j \omega)+\cdots\right] \tag{13-24b}
\end{align*}
$$

Bode Diagrams

- A special graph, called the Bode diagram or Bode plot, provides a convenient display of the frequency response characteristics of a transfer function model. It consists of plots of AR and φ as a function of ω.
- Ordinarily, ω is expressed in units of radians/time.

Bode Plot of A First-order System

Recall:

$$
\mathrm{AR}_{\mathrm{N}}=\frac{1}{\sqrt{\omega^{2} \tau^{2}+1}} \text { and } \varphi=-\tan ^{-1}(\omega \tau)
$$

- At low frequencies ($\omega \rightarrow 0$ and $\omega \tau \ll 1$):

$$
\mathrm{AR}_{\mathrm{N}}=1 \text { and } \varphi=0
$$

- At high frequencies ($\omega \rightarrow \infty$ and $\omega \tau \gg 1$):

$$
\mathrm{AR}_{\mathrm{N}}=1 / \omega \tau \text { and } \varphi=-90^{\circ}
$$

Figure 13.2 Bode diagram for a first-order process.

- Note that the asymptotes intersect at $\omega=\omega_{b}=1 / \tau$, known as the break frequency or corner frequency. Here the value of AR_{N} from (13-21) is:

$$
\begin{equation*}
\mathrm{AR}_{\mathrm{N}}\left(\omega=\omega_{b}\right)=\frac{1}{\sqrt{1+1}}=0.707 \tag{13-30}
\end{equation*}
$$

- Some books and software defined AR differently, in terms of decibels. The amplitude ratio in decibels AR_{d} is defined as

$$
\begin{equation*}
\mathrm{AR}_{\mathrm{d}}=20 \log \mathrm{AR} \tag{13-33}
\end{equation*}
$$

Integrating Elements

The transfer function for an integrating element was given in Chapter 5:

$$
\begin{gather*}
G(s)=\frac{Y(s)}{U(s)}=\frac{K}{s} \tag{5-34}\\
\mathrm{AR}=|G(j \omega)|=\left|\frac{K}{j \omega}\right|=\frac{K}{\omega} \tag{13-34}\\
\varphi=\angle G(j \omega)=\angle K-\angle(\infty)=-90^{\circ} \tag{13-35}
\end{gather*}
$$

Second-Order Process

A general transfer function that describes any underdamped, critically damped, or overdamped second-order system is

$$
\begin{equation*}
G(s)=\frac{K}{\tau^{2} s^{2}+2 \zeta \tau s+1} \tag{13-40}
\end{equation*}
$$

Substituting $s=j \omega$ and rearranging yields:

$$
\begin{align*}
\mathrm{AR} & =\frac{K}{\sqrt{\left(1-\omega^{2} \tau^{2}\right)^{2}+(2 \omega \tau \zeta)^{2}}} \tag{13-41a}\\
\varphi & =\tan ^{-1}\left[\frac{-2 \omega \tau \zeta}{1-\omega^{2} \tau^{2}}\right] \tag{13-41b}
\end{align*}
$$

Figure 13.3 Bode diagrams for second-order processes.

Time Delay

Its frequency response characteristics can be obtained by substituting $s=j \omega$,

$$
\begin{equation*}
G(j \omega)=e^{-j \omega \theta} \tag{13-53}
\end{equation*}
$$

which can be written in rational form by substitution of the Euler identity,

$$
\begin{equation*}
G(j \omega)=e^{-j \omega \theta}=\cos \omega \theta-j \sin \omega \theta \tag{13-54}
\end{equation*}
$$

From (13-54)

$$
\begin{align*}
& \mathrm{AR}=|G(j \omega)|=\sqrt{\cos ^{2} \omega \theta+\sin ^{2} \omega \theta}=1 \tag{13-55}\\
& \varphi=\angle G(j \omega)=\tan ^{-1}\left(-\frac{\sin \omega \theta}{\cos \omega \theta}\right)
\end{align*}
$$

or

$$
\begin{equation*}
\varphi=-\omega \theta \tag{13-56}
\end{equation*}
$$

Figure 13.6 Bode diagram for a time delay, $e^{-\theta s}$.

Figure 13.7 Phase angle plots for $e^{-\theta s}$ and for the $1 / 1$ and $2 / 2$ Padé approximations (G_{1} is $1 / 1 ; G_{2}$ is $2 / 2$).

Process Zeros

Consider a process zero term,

$$
G(s)=K(s \tau+1)
$$

Substituting $s=j \omega$ gives

$$
G(j \omega)=K(j \omega \tau+1)
$$

Thus:

$$
\begin{aligned}
& \mathrm{AR}=|G(j \omega)|=K \sqrt{\omega^{2} \tau^{2}+1} \\
& \varphi=\angle G(j \omega)=+\tan ^{-1}(\omega \tau)
\end{aligned}
$$

Note: In general, a multiplicative constant (e.g., K) changes the AR by a factor of K without affecting φ.

Frequency Response Characteristics of Feedback Controllers

Proportional Controller. Consider a proportional controller with positive gain

$$
\begin{equation*}
G_{c}(s)=K_{c} \tag{13-57}
\end{equation*}
$$

In this case $\left|G_{c}(j \omega)\right|=K_{c}$, which is independent of ω. Therefore,

$$
\begin{equation*}
\mathrm{AR}_{c}=K_{c} \tag{13-58}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{c}=0^{\circ} \tag{13-59}
\end{equation*}
$$

Proportional-Integral Controller. A proportional-integral (PI) controller has the transfer function (cf. Eq. 8-9),

$$
\begin{equation*}
G_{c}(s)=K_{c}\left(1+\frac{1}{\tau_{I} s}\right)=K_{c}\left(\frac{\tau_{I} s+1}{\tau_{I} s}\right) \tag{13-60}
\end{equation*}
$$

Substitute $\mathrm{s}=\mathrm{j} \omega$:

$$
G_{c}(j \omega)=K_{c}\left(1+\frac{1}{\tau_{I} j \omega}\right)=K_{c}\left(\frac{j \omega \tau_{I}+1}{j \omega \tau_{I}}\right)=K_{c}\left(1-\frac{1}{\tau_{I} \omega} j\right)
$$

Thus, the amplitude ratio and phase angle are:

$$
\begin{align*}
& \mathrm{AR}_{c}=\left|G_{c}(j \omega)\right|=K_{c} \sqrt{1+\frac{1}{\left(\omega \tau_{I}\right)^{2}}}=K_{c} \frac{\sqrt{\left(\omega \tau_{I}\right)^{2}+1}}{\omega \tau_{I}} \tag{13-62}\\
& \varphi_{c}=\angle G_{c}(j \omega)=\tan ^{-1}\left(-1 / \omega \tau_{I}\right)=\tan ^{-1}\left(\omega \tau_{I}\right)-90^{\circ} \tag{13-63}
\end{align*}
$$

Figure 13.9 Bode plot of a PI controller, $G_{c}(s)=2\left(\frac{10 s+1}{10 s}\right)$

Ideal Proportional-Derivative Controller. For the ideal proportional-derivative (PD) controller (cf. Eq. 8-11)

$$
\begin{equation*}
G_{c}(s)=K_{c}\left(1+\tau_{D} s\right) \tag{13-64}
\end{equation*}
$$

The frequency response characteristics are similar to those of a LHP zero:

$$
\begin{align*}
& \mathrm{AR}_{c}=K_{c} \sqrt{\left(\omega \tau_{D}\right)^{2}+1} \tag{13-65}\\
& \varphi=\tan ^{-1}\left(\omega \tau_{D}\right) \tag{13-66}
\end{align*}
$$

Proportional-Derivative Controller with Filter. The PD controller is most often realized by the transfer function

$$
\begin{equation*}
G_{c}(s)=K_{c}\left(\frac{\tau_{D} s+1}{\alpha \tau_{D} s+1}\right) \tag{13-67}
\end{equation*}
$$

Figure 13.10 Bode plots of an ideal PD controller and a PD controller with derivative filter.

Idea: $G_{c}(s)=2(4 s+1)$
With Derivative Filter:

$$
G_{c}(s)=2\left(\frac{4 s+1}{0.4 s+1}\right)
$$

PID Controller Forms

Parallel PID Controller. The simplest form in Ch. 8 is

$$
G_{c}(s)=K_{c}\left(1+\frac{1}{\tau_{1} s}+\tau_{D} s\right)
$$

Series PID Controller. The simplest version of the series PID controller is

$$
\begin{equation*}
G_{c}(s)=K_{c}\left(\frac{\tau_{1} s+1}{\tau_{1} s}\right)\left(\tau_{D} s+1\right) \tag{13-73}
\end{equation*}
$$

Series PID Controller with a Derivative Filter.

$$
G_{c}(s)=K_{c}\left(\frac{\tau_{1} s+1}{\tau_{1} s}\right)\left(\frac{\tau_{D} s+1}{\alpha \tau_{D} s+1}\right)
$$

Figure 13.11 Bode plots of ideal parallel PID controller and series PID controller with derivative filter ($\alpha=1$).

Idea parallel:

$$
G_{c}(s)=2\left(1+\frac{1}{10 s}+4 s\right)
$$

Series with
Derivative Filter:

$$
G_{C}(s)=2\left(\frac{10 s+1}{10 s}\right)\left(\frac{4 s+1}{0.4 s+1}\right)
$$

Nyquist Diagrams

Consider the transfer function

$$
\begin{equation*}
G(s)=\frac{1}{2 s+1} \tag{13-76}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{AR}=|G(j \omega)|=\frac{1}{\sqrt{(2 \omega)^{2}+1}} \tag{13-77a}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=\angle G(j \omega)=-\tan ^{-1}(2 \omega) \tag{13-77b}
\end{equation*}
$$

Figure 13.12 The Nyquist diagram for $G(s)=1 /(2 s+1)$ plotting $\operatorname{Re}(G(j \omega))$ and $\operatorname{Im}(G(j \omega))$.

Figure 13.13 The Nyquist diagram for the transfer function in Example 13.5:

$$
G(s)=\frac{5(8 s+1) e^{-6 s}}{(20 s+1)(4 s+1)}
$$

