Process Dynamics and Control

Second Edition

Dale E. Seborg Thomas F. Edgar Duncan A. Mellichamp

Process Dynamics

- a) Refers to unsteady-state or transient behavior.
- b) Steady-state vs. unsteady-state behavior
 - i. <u>Steady state</u>: variables do not change with time
 - ii. But on what scale? cf., noisy measurement
- c) ChE curriculum emphasizes steady-state or equilibrium situations:
 - i. Examples: ChE 10, 110, 120.
- d) *Continuous processes*: Examples of transient behavior:
 - i. Start up & shutdown
 - ii. Grade changes
 - iii. Major disturbance: e.g., refinery during stormy or hurricane conditions
 - iv. Equipment or instrument failure (e.g., pump failure)

e) Batch processes

- i. Inherently unsteady-state operation
- ii. Example: Batch reactor
 - 1. Composition changes with time
 - 2. Other variables such as temperature could be constant.

Process Control

a) Large scale, continuous processes:

- i. Oil refinery, ethylene plant, pulp mill
- ii. Typically, 1000 5000 process variables are measured.
 - 1. Most of these variables are also <u>controlled</u>.

Process Control (cont'd.)

iii. Examples: flow rate, *T*, *P*, liquid level, compositioniv. Sampling rates:

- 1. <u>Process variables</u>: A few seconds to minutes
- 2. Quality variables: once per 8 hr shift, daily, or weekly
- b) Manipulated variables
 - i. We implement "process control" by manipulating process variables, usually flow rates.
 - 1. Examples: feed rate, cooling rate, product flow rate, etc.
 - ii. Typically, several thousand manipulated variables in a large continuous plant

Process Control (cont'd.)

- c) Batch plants:
 - i. Smaller plants in most industries
 - 1. Exception: microelectronics (200 300 processing steps).
 - ii. But still large numbers of measured variables.

d) Question: How do we control processes?

i. We will consider an illustrative example.

1.1 Illustrative Example: Blending system

Figure 1.3. Stirred-tank blending system.

Notation:

- w_1 , w_2 and w are mass flow rates
- x_1, x_2 and x are mass fractions of component A

Assumptions:

- 1. w_1 is constant
- 2. $x_2 = \text{constant} = 1$ (stream 2 is pure A)
- 3. Perfect mixing in the tank

Control Objective:

Keep x at a desired value (or "set point") x_{sp} , despite variations in $x_1(t)$. Flow rate w_2 can be adjusted for this purpose.

Terminology:

- Controlled variable (or "output variable"): *x*
- Manipulated variable (or "input variable"): w_2
- Disturbance variable (or "load variable"): x_1

Design Question. What value of \overline{w}_2 is required to have $\overline{x} = x_{SP}$?

Overall balance:

$$0 = \overline{w}_1 + \overline{w}_2 - \overline{w} \tag{1-1}$$

Component A balance:

$$\overline{w}_1 \overline{x}_1 + \overline{w}_2 \overline{x}_2 - \overline{w} \overline{x} = 0 \tag{1-2}$$

(The overbars denote nominal steady-state design values.)

• At the design conditions, $\overline{x} = x_{SP}$. Substitute Eq. 1-2, $\overline{x} = x_{SP}$ and $\overline{x}_2 = 1$, then solve Eq. 1-2 for \overline{w}_2 :

$$\overline{w}_2 = \overline{w}_1 \frac{x_{SP} - \overline{x}_1}{1 - x_{SP}} \tag{1-3}$$

- Equation 1-3 is the design equation for the blending system.
- If our assumptions are correct, then this value of \overline{w}_2 will keep \overline{x} at x_{SP} . But what if conditions change?

Control Question. Suppose that the inlet concentration x_1 changes with time. How can we ensure that x remains at or near the set point x_{SP} ?

As a specific example, if $x_1 > \overline{x_1}$ and $w_2 = \overline{w_2}$, then $x > x_{SP}$.

Some Possible Control Strategies:

Method 1. *Measure x and adjust w*₂.

• Intuitively, if x is too high, we should reduce w_2 ;

- Manual control vs. automatic control
- Proportional feedback control law,

$$w_2(t) = \overline{w}_2 + K_c \left[x_{SP} - x(t) \right]$$
(1-4)

- 1. where K_c is called the controller gain.
- 2. $w_2(t)$ and x(t) denote variables that change with time *t*.
- 3. The change in the flow rate, $w_2(t) \overline{w}_2$, is proportional to the deviation from the set point, $x_{SP} x(t)$.

Figure 1.4. Blending system and Control Method 1.

Method 2. *Measure* x_1 *and adjust* w_2 .

- Thus, if x_1 is greater than \overline{x}_1 , we would decrease w_2 so that $w_2 < \overline{w}_2$;
- One approach: Consider Eq. (1-3) and replace x_1 and \overline{w}_2 with $x_1(t)$ and $w_2(t)$ to get a control law:

$$w_2(t) = \overline{w}_1 \frac{x_{SP} - x_1(t)}{1 - x_{SP}}$$
 (1-5)

Figure 1.5. Blending system and Control Method 2.

Chapter 1

• Because Eq. (1-3) applies only at steady state, it is not clear how effective the control law in (1-5) will be for transient conditions.

Method 3. *Measure* x_1 *and* x*, adjust* w_2 *.*

• This approach is a combination of Methods 1 and 2.

Method 4. Use a larger tank.

- If a larger tank is used, fluctuations in x_1 will tend to be damped out due to the larger capacitance of the tank contents.
- However, a larger tank means an increased capital cost.

1.2 Classification of Control Strategies

ruble. I.I Control Strategies for the Dienang System			
Method	Measured Variable	Manipulated Variable	Category
1	X	w ₂	FB ^a
2	x_1	w ₂	FF
3	x_1 and x	w_2	FF/FB
4	-	-	Design change

Table. 1.1 Control Strategies for the Blending System

Feedback Control:

• Distinguishing feature: measure the controlled variable

- It is important to make a distinction between *negative feedback and positive feedback*.
 - Engineering Usage vs. Social Sciences
- Advantages:
 - Corrective action is taken regardless of the source of the disturbance.
 - Reduces sensitivity of the controlled variable to disturbances and changes in the process (shown later).
- Disadvantages:
 - No corrective action occurs until after the disturbance has upset the process, that is, until after x differs from x_{sp}.
 - Very oscillatory responses, or even instability...

Feedforward Control:

Distinguishing feature: measure a disturbance variable

• Advantage:

> Correct for disturbance before it upsets the process.

- Disadvantage:
 - ➤ Must be able to measure the disturbance.
 - > No corrective action for unmeasured disturbances.

Figure 1.7 Hierarchy of process control activities.

