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Fig. 12.1. Unit-step disturbance responses for the candidate controllers 
(FOPTD Model: K = 1, θ 4, τ 20).= =

Controller Tuning:  A Motivational Example
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PID Controller Design, Tuning, and 
Troubleshooting

Performance Criteria For Closed-Loop Systems
• The function of a feedback control system is to ensure that 

the closed loop system has desirable dynamic and steady-
state response characteristics. 

• Ideally, we would like the closed-loop system to satisfy the 
following performance criteria:

1. The closed-loop system must be stable.

2. The effects of disturbances are minimized, providing 
good disturbance rejection.

3. Rapid, smooth responses to set-point changes are 
obtained, that is, good set-point tracking.
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4. Steady-state error (offset) is eliminated.

5. Excessive control action is avoided.

6. The control system is robust, that is, insensitive to 
changes in process conditions and to inaccuracies in the 
process model.

PID controller settings can be determined by a number 
of alternative techniques:

1. Direct Synthesis (DS) method

2. Internal Model Control (IMC) method

3. Controller tuning relations

4. Frequency response techniques

5. Computer simulation

6. On-line tuning after the control system is installed.
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Direct Synthesis Method
• In the Direct Synthesis (DS) method, the controller design is 

based on a process model and a desired closed-loop transfer 
function. 

• The latter is usually specified for set-point changes, but 
responses to disturbances can also be utilized (Chen and 
Seborg, 2002). 

• Although these feedback controllers do not always have a PID 
structure, the DS method does produce PI or PID controllers 
for common process models.

• As a starting point for the analysis, consider the block diagram
of a feedback control system in Figure 12.2. The closed-loop 
transfer function for set-point changes was derived in Section 
11.2:

(12-1)
1

m c v p

sp c v p m

K G G GY
Y G G G G

=
+
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Fig. 12.2.  Block diagram for a standard feedback control system. 
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For simplicity, let                        and assume that Gm = Km. Then 
Eq. 12-1 reduces to

v p mG G G G

(12-2)
1

c

sp c

G GY
Y G G

=
+

Rearranging and solving for Gc gives an expression for the 
feedback controller:

/1 (12-3a)
1 /

sp
c

sp

Y Y
G

G Y Y
 

=   − 
• Equation 12-3a cannot be used for controller design because the 

closed-loop transfer function Y/Ysp is not known a priori. 
• Also, it is useful to distinguish between the actual process G

and the model,    , that provides an approximation of the 
process behavior. 

• A practical design equation can be derived by replacing the 
unknown G by    , and Y/Ysp by a desired closed-loop transfer 
function, (Y/Ysp)d:

G

G
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( )
( )

/1 (12-3b)
1 /

sp d
c

sp d

Y Y
G

G Y Y

 
 =
 −
 

• The specification of (Y/Ysp)d is the key design decision and will 
be considered later in this section. 

• Note that the controller transfer function in (12-3b) contains 
the inverse of the process model owing to the          term. 

• This feature is a distinguishing characteristic of model-based 
control.

1/ G

Desired Closed-Loop Transfer Function
For processes without time delays, the first-order model in 
Eq. 12-4 is a reasonable choice,

1 (12-4)
1sp cd

Y
Y sτ

 
=   + 
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• The model has a settling time of  ~ 4   , as shown in 
Section 5. 2.

• Because the steady-state gain is one, no offset occurs for set-
point changes. 

• By substituting (12-4) into (12-3b) and solving for Gc, the 
controller design equation becomes:

τc

1 1 (12-5)
τc

c
G

sG
=

• The            term provides integral control action and thus 
eliminates offset. 

• Design parameter       provides a convenient controller tuning 
parameter that can be used to make the controller more 
aggressive (small     ) or less aggressive (large    ).

1/ τcs

τc

τcτc
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• If the process transfer function contains a known time delay   ,
a reasonable choice for the desired closed-loop transfer 
function is:

θ

θ
(12-6)

τ 1

s

sp cd

Y e
Y s

− 
=   + 

• The time-delay term in (12-6) is essential because it is 
physically impossible for the controlled variable to respond to 
a set-point change at t = 0, before t =   . 

• If the time delay is unknown,     must be replaced by an 
estimate. 

• Combining Eqs. 12-6 and 12-3b gives:

θ

θ

θ

θ
1 (12-7)
τ 1

s

c s
c

eG
G s e

−

−=
+ −
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• Although this controller is not in a standard PID form, it is 
physically realizable. 

• Next, we show that the design equation in Eq. 12-7 can be used 
to derive PID controllers for simple process models. 

• The following derivation is based on approximating the time-
delay term in the denominator of (12-7) with a truncated Taylor 
series expansion:

θ 1 θ (12-8)se s− ≈ −

Substituting (12-8) into the denominator of Eq. 12-7 and 
rearranging gives

( )

θ1 (12-9)
τ θ

−
=

+

s

c s
c

eG
G

Note that this controller also contains integral control action.
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First-Order-plus-Time-Delay (FOPTD) Model
Consider the standard FOPTD model,

( )
θ

(12-10)
τ 1

sKeG s
s

−
=

+

Substituting Eq. 12-10 into Eq. 12-9 and rearranging gives a PI 
controller,                                 with the following controller 
settings:

( )1 1/ τ ,c c IG K s= +

1 τ , τ τ (12-11)
θ τc I

c
K

K
= =

+

Second-Order-plus-Time-Delay (SOPTD) Model
Consider a SOPTD model,

( ) ( )( )
θ

1 2
(12-12)

τ 1 τ 1

sKeG s
s s

−
=

+ +
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Substitution into Eq. 12-9 and rearrangement gives a PID 
controller in parallel form,

11 τ (12-13)
τc c D

I
G K s

s
 

= + + 
 

where:

1 2 1 2
1 2

1 2

τ τ τ τ1 , τ τ τ , τ (12-14)
τ τ τc I D

c
K

K θ
+

= = + =
+ +

Example 12.1
Use the DS design method to calculate PID controller settings for 
the process:

( )( )
2

10 1 5 1

seG
s s

−
=

+ +
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Consider three values of the desired closed-loop time constant:        
. Evaluate the controllers for unit step changes in 

both the set point and the disturbance, assuming that Gd = G. 
Repeat the evaluation for two cases:

1, 3, and 10cτ =

a. The process model is perfect (    = G).
b. The model gain is      = 0.9, instead of the actual value, K = 2. 

Thus,

G
K

0.9 se−

( )( )10 1 5 1
G

s s
=

+ +

The controller settings for this example are:

3.333.333.33
151515
1.514.178.33
0.6821.883.75

τ 1c = τ 3c = 10cτ =

( )2cK K =

( )0.9cK K =
τI
τD
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The values of Kc decrease as      increases, but the values of       
and       do not change, as indicated by Eq. 12-14.

τc τI
τD

Figure 12.3 Simulation results for Example 12.1 (a): correct
model gain.
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Fig. 12.4 Simulation results for Example 12.1 (b): incorrect 
model gain. 
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Internal Model Control (IMC)
• A more comprehensive model-based design method, Internal 

Model Control (IMC), was developed by Morari and 
coworkers (Garcia and Morari, 1982; Rivera et al., 1986). 

• The IMC method, like the DS method, is based on an assumed 
process model and leads to analytical expressions for the 
controller settings. 

• These two design methods are closely related and produce 
identical controllers if the design parameters are specified in a 
consistent manner. 

• The IMC method is based on the simplified block diagram 
shown in Fig. 12.6b. A process model      and the controller 
output P are used to calculate the model response,    . 

G
Y
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• The model response is subtracted from the actual response Y, 
and the difference,           is used as the input signal to the IMC 
controller,     . 

• In general,            due to modeling errors              and unknown 
disturbances              that are not accounted for in the model.

• The block diagrams for conventional feedback control and 
IMC are compared in Fig. 12.6.

Y Y−
*
cG

Y Y≠ ( )G G≠
( )0D ≠

Figure 12.6. 
Feedback control 
strategies
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*
cG

• It can be shown that the two block diagrams are identical if 
controllers Gc and       satisfy the relation

*

* (12-16)
1

c
c

c

GG
G G

=
−

• Thus, any IMC controller      is equivalent to a standard 
feedback controller Gc, and vice versa. 

• The following closed-loop relation for IMC can be derived from 
Fig. 12.6b using the block diagram algebra of Chapter 11:

*
cG

( ) ( )
* *

* *
1 (12-17)

1 1
c c

sp
c c

G G G GY Y D
G G G G G G

−
= +

+ − + −
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For the special case of a perfect model,           , (12-17) reduces toG G=

( )* *1 (12-18)c sp cY G GY G G D= + −

The IMC controller is designed in two steps: 

Step 1. The process model is factored as

(12-19)G G G+ −=

where       contains any time delays and right-half plane 
zeros. 

• In addition,       is required to have a steady-state gain equal 
to one in order to ensure that the two factors in Eq. 12-19 
are unique.

G+

G+
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Step 2. The controller is specified as

* 1 (12-20)cG f
G−

=

where f is a low-pass filter with a steady-state gain of one. It 
typically has the form:

( )
1 (12-21)

τ 1 r
c

f
s

=
+

In analogy with the DS method,     is the desired closed-loop time 
constant. Parameter r is a positive integer. The usual choice is      
r = 1.

τc
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For the ideal situation where the process model is perfect      , 
substituting Eq. 12-20 into (12-18) gives the closed-loop 
expression

( )G G=

( )1 (12-22)spY G fY fG D+ += + −

Thus, the closed-loop transfer function for set-point changes is

(12-23)
sp

Y G f
Y +=

Selection of τc

• The choice of design parameter      is a key decision in both the 
DS and IMC design methods. 

• In general, increasing      produces a more conservative 
controller because Kc decreases while      increases.

τc

τc
τI
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• Several IMC guidelines for      have been published for the 
model in Eq. 12-10:

τc

1. > 0.8  and (Rivera et al., 1986)

2. (Chien and Fruehauf, 1990)

3. (Skogestad, 2003)

τ /θc τ 0.1τc >

τ τ θc> >

τ θc =

Controller Tuning Relations
In the last section, we have seen that model-based design 
methods such as DS and IMC produce PI or PID controllers for 
certain classes of process models.

IMC Tuning Relations
The IMC method can be used to derive PID controller settings 
for a variety of transfer function models.
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Table 12.1 IMC-Based PID Controller Settings for Gc(s) 
(Chien and Fruehauf, 1990). See the text for the rest of this 
table.
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Tuning for Lag-Dominant Models

• First- or second-order models with relatively small time delays     
are referred to as lag-dominant models. 

• The IMC and DS methods provide satisfactory set-point 
responses, but very slow disturbance responses, because the 
value of      is very large. 

• Fortunately, this problem can be solved in three different ways.

Method 1: Integrator Approximation

τI

( )θ / τ 1

*Approximate ( ) by ( )
1

where * / .

s sKe K eG s G s
s s

K K

−θ −θ
= =
τ +

τ

• Then can use the IMC tuning rules (Rule M or N) 
to specify the controller settings.
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Method 2.  Limit the Value of τI

• For lag-dominant models, the standard IMC controllers for first-
order and second-order models provide sluggish disturbance 
responses because      is very large. 

• For example, controller G in Table 12.1 has            where     is 
very large. 

• As a remedy, Skogestad (2003) has proposed limiting the value 
of     :

τI

τ τI = τ

τI

( ){ }1τ min τ ,4 τ θ (12-34)I c= +

where τ1 is the largest time constant (if there are two). 

Method 3.  Design the Controller for Disturbances, Rather 
Set-point Changes

• The desired CLTF is expressed in terms of (Y/D)des, rather than (Y/Ysp)des

• Reference: Chen & Seborg (2002)
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Example 12.4

Consider a lag-dominant model with θ / τ 0.01:=

( ) 100
100 1

sG s e
s

−=
+

Design four PI controllers:

a) IMC

b) IMC               based on the integrator approximation

c) IMC             with Skogestad’s modification (Eq. 12-34)

d) Direct Synthesis method for disturbance rejection (Chen and 
Seborg, 2002): The controller settings are Kc = 0.551 and      

( )τ 1c =

( )τ 2c =

( )τ 1c =

τ 4.91.I =
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Evaluate the four controllers by comparing their performance for
unit step changes in both set point and disturbance. Assume that
the model is perfect and that Gd(s) = G(s).

Solution

The PI controller settings are:

4.910.551(d) DS-d
80.5(c) Skogestad
50.556(b) Integrator approximation

1000.5(a) IMC

KcController Iτ
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Figure 12.8. Comparison 
of set-point responses 
(top) and disturbance 
responses (bottom) for 
Example 12.4. The 
responses for the Chen 
and Seborg and integrator 
approximation methods 
are essentially identical.
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Tuning Relations Based on Integral 
Error Criteria
• Controller tuning relations have been developed that optimize 

the closed-loop response for a simple process model and a 
specified disturbance or set-point change. 

• The optimum settings minimize an integral error criterion. 

• Three popular integral error criteria are:

1. Integral of the absolute value of the error (IAE)

( )
0

IAE (12-35)e t dt
∞

= ∫

where the error signal e(t) is the difference between the set 
point and the measurement.
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Figure 12.9. Graphical 
interpretation of IAE. 
The shaded area is the 
IAE value.
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2. Integral of the squared error (ISE)

( ) 2

0

ISE (12-36)e t dt
∞

 =  ∫

3. Integral of the time-weighted absolute error (ITAE)

( )
0

ITAE (12-37)t e t dt
∞

= ∫

See text for ITAE controller tuning relations.

Comparison of Controller Design and 
Tuning Relations
Although the design and tuning relations of the previous sections 
are based on different performance criteria, several general 
conclusions can be drawn:
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1. The controller gain Kc should be inversely proportional to the 
product of the other gains in the feedback loop (i.e., Kc 1/K
where K = KvKpKm).

2. Kc should decrease as         , the ratio of the time delay to the
dominant time constant, increases. In general, the quality of 
control decreases as         increases owing to longer settling 
times and larger maximum deviations from the set point.

3. Both      and       should increase as         increases. For many 
controller tuning relations, the ratio,           , is between 0.1 and 
0.3. As a rule of thumb, use            = 0.25 as a first guess.

4. When integral control action is added to a proportional-only 
controller, Kc should be reduced. The further addition of 
derivative action allows Kc to be increased to a value greater 
than that for proportional-only control.

θ / τ

θ / τ

τI τD θ / τ
τ / τD I

τ / τD I

∝
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Controllers With Two Degrees 
of Freedom

• The specification of controller settings for a standard PID 
controller typically requires a tradeoff between set-point 
tracking and disturbance rejection. 

• These strategies are referred to as controllers with two-
degrees-of-freedom.

• The first strategy is very simple. Set-point changes are 
introduced gradually rather than as abrupt step changes. 

• For example, the set point can be ramped as shown in Fig. 
12.10 or “filtered” by passing it through a first-order transfer 
function,

* 1 (12-38)
τ 1

sp

sp f

Y
Y s

=
+
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where       denotes the filtered set point that is used in the control 
calculations. 

• The filter time constant,      determines how quickly the filtered 
set point will attain the new value, as shown in Fig. 12.10.

*
spY

τ f

Figure 12.10 Implementation of set-point changes.
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• A second strategy for independently adjusting the set-point 
response is based on a simple modification of the PID control 
law in Chapter 8,

( ) ( ) ( )* *

0

1 (8-7)
t

m
c D

I

dyp t p K e t e t dt
dt

τ
τ

 
= + + − 

  
∫

where ym is the measured value of y and e is the error signal.        
. 

• The control law modification consists of multiplying the set 
point in the proportional term by a set-point weighting factor,   :

sp me y y−

β

( ) ( ) ( )

( )* *

0

β

1 τ (12-39)
τ

c sp m

t
m

c D
I

p t p K y t y t

dyK e t dt
dt

 = + − 
 

+ − 
  
∫

The set-point weighting factor is bounded, 0 < ß < 1, and serves as 
a convenient tuning factor.
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Figure 12.11 Influence of set-point weighting on closed-loop 
responses for Example 12.6.
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On-Line Controller Tuning
1. Controller tuning inevitably involves a tradeoff between 

performance and robustness.

2. Controller settings do not have to be precisely determined. In 
general, a small change in a controller setting from its best 
value (for example, ±10%) has little effect on closed-loop 
responses.

3. For most plants, it is not feasible to manually tune each 
controller. Tuning is usually done by a control specialist 
(engineer or technician) or by a plant operator. Because each 
person is typically responsible for 300 to 1000 control loops, it 
is not feasible to tune every controller.

4. Diagnostic techniques for monitoring control system 
performance are available.
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Continuous Cycling Method
Over 60 years ago, Ziegler and Nichols (1942) published a 
classic paper that introduced the continuous cycling method for 
controller tuning. It is based on the following trial-and-error 
procedure:

Step 1. After the process has reached steady state (at least 
approximately), eliminate the integral and derivative control 
action by setting      to zero and      to the largest possible value.

Step 2. Set Kc equal to a small value (e.g., 0.5) and place the 
controller in the automatic mode.

Step 3. Introduce a small, momentary set-point change so that the 
controlled variable moves away from the set point. Gradually 
increase Kc in small increments until continuous cycling occurs. 
The term continuous cycling refers to a sustained oscillation with 
a constant amplitude. The numerical value of Kc that produces 

τD τI
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continuous cycling (for proportional-only control) is called the 
ultimate gain, Kcu. The period of the corresponding sustained 
oscillation is referred to as the ultimate period, Pu. 

Step 4. Calculate the PID controller settings using the Ziegler-
Nichols (Z-N) tuning relations in Table 12.6.

Step 5. Evaluate the Z-N controller settings by introducing a 
small set-point change and observing the closed-loop response. 
Fine-tune the settings, if necessary.

The continuous cycling method, or a modified version of it, is 
frequently recommended by control system vendors. Even so, the 
continuous cycling method has several major disadvantages:

1. It can be quite time-consuming if several trials are required and 
the process dynamics are slow. The long experimental tests 
may result in reduced production or poor product quality.
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Pu

Figure 12.12 Experimental determination of the ultimate gain 
Kcu.
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2. In many applications, continuous cycling is objectionable 
because the process is pushed to the stability limits.

3. This tuning procedure is not applicable to integrating or 
open-loop unstable processes because their control loops 
typically are unstable at both high and low values of Kc, 
while being stable for intermediate values.

4. For first-order and second-order models without time delays, 
the ultimate gain does not exist because the closed-loop 
system is stable for all values of Kc, providing that its sign is 
correct. However, in practice, it is unusual for a control loop 
not to have an ultimate gain.
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Relay Auto-Tuning
• Åström and Hägglund (1984) have developed an attractive 

alternative to the continuous cycling method. 

• In the relay auto-tuning method, a simple experimental test is 
used to determine Kcu and Pu. 

• For this test, the feedback controller is temporarily replaced by 
an on-off controller (or relay). 

• After the control loop is closed, the controlled variable exhibits 
a sustained oscillation that is characteristic of on-off control 
(cf. Section 8.4). The operation of the relay auto-tuner includes 
a dead band as shown in Fig. 12.14. 

• The dead band is used to avoid frequent switching caused by 
measurement noise. 
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Figure 12.14 Auto-tuning using a relay controller.
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• The relay auto-tuning method has several important advantages 
compared to the continuous cycling method:

1. Only a single experiment test is required instead of a 
trial-and-error procedure.

2. The amplitude of the process output a can be restricted 
by adjusting relay amplitude d.

3. The process is not forced to a stability limit.

4. The experimental test is easily automated using 
commercial products.
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Step Test Method
• In their classic paper, Ziegler and Nichols (1942) proposed a 

second on-line tuning technique based on a single step test. 
The experimental procedure is quite simple. 

• After the process has reached steady state (at least 
approximately), the controller is placed in the manual mode. 

• Then a small step change in the controller output (e.g., 3 to 
5%) is introduced. 

• The controller settings are based on the process reaction curve
(Section 7.2), the open-loop step response. 

• Consequently, this on-line tuning technique is referred to as the 
step test method or the process reaction curve method.
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Figure 12.15 Typical process reaction curves: (a) non-self-
regulating process, (b) self-regulating process.
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An appropriate transfer function model can be obtained from the 
step response by using the parameter estimation methods of 
Chapter 7. 

The chief advantage of the step test method is that only a single 
experimental test is necessary. But the method does have four 
disadvantages:
1. The experimental test is performed under open-loop conditions. 

Thus, if a significant disturbance occurs during the test, no 
corrective action is taken. Consequently, the process can be 
upset, and the test results may be misleading.

2. For a nonlinear process, the test results can be sensitive to the 
magnitude and direction of the step change. If the magnitude of 
the step change is too large, process nonlinearities can 
influence the result. But if the step magnitude is too small, the 
step response may be difficult to distinguish from the usual 
fluctuations due to noise and disturbances. The direction of the
step change (positive or negative) should be chosen so that 
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the controlled variable will not violate a constraint.
3. The method is not applicable to open-loop unstable processes.

4. For analog controllers, the method tends to be sensitive to 
controller calibration errors. By contrast, the continuous 
cycling method is less sensitive to calibration errors in Kc
because it is adjusted during the experimental test. 

Example 12.8
Consider the feedback control system for the stirred-tank blending 
process shown in Fig. 11.1 and the following step test. The 
controller was placed in manual, and then its output was suddenly 
changed from 30% to 43%. The resulting process reaction curve is
shown in Fig. 12.16. Thus, after the step change occurred at t = 0, 
the measured exit composition changed from 35% to 55% 
(expressed as a percentage of the measurement span), which is 
equivalent to the mole fraction changing from 0.10 to 0.30. 
Determine an appropriate process model for .IP v p mG G G G G
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Figure 11.1 Composition control system for a stirred-tank 
blending process.
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Figure 12.16 Process reaction curve for Example 12.8.
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Figure 12.17 Block diagram for Example 12.8.
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Solution

A block diagram for the closed-loop system is shown in Fig. 
12.17. This block diagram is similar to Fig. 11.7, but the feedback 
loop has been broken between the controller and the current-to-
pressure (I/P) transducer. A first-order-plus-time-delay model can 
be developed from the process reaction curve in Fig. 12.16 using
the graphical method of Section 7.2. The tangent line through the 
inflection point intersects the horizontal lines for the initial and 
final composition values at 1.07 min and 7.00 min, respectively.
The slope of the line is

55 35% 3.37% / min
7.00 1.07 min

S
 −

= = − 

and the normalized slope is

13.37% / min 0.259min
43% 30%

SR
p

−= = =
∆ −
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The model parameters can be calculated as

( )55% 35% 1.54 dimensionless
43% 30%

θ 1.07 min
τ 7.00 1.07 min 5.93 min

mxK
p

∆ −
= = =

∆ −
=
= − =

The apparent time delay of 1.07 min is subtracted from the 
intercept value of 7.00 min for the     calculation.

The resulting empirical process model can be expressed as

τ

( )
( ) ( )

1.071.54
5.93 1

s
mX s eG s

P s s

−′
= =

′ +

Example 12.5 in Section 12.3 provided a comparison of PI 
controller settings for this model that were calculated using 
different tuning relations.
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Guidelines For Common Control Loops 
(see text)

Troubleshooting Control Loops
• If a control loop is not performing satisfactorily, then 

troubleshooting is necessary to identify the source of the 
problem.

• Based on experience in the chemical industry, he has observed 
that a control loop that once operated satisfactorily can become
either unstable or excessively sluggish for a variety of reasons
that include:

a. Changing process conditions, usually changes in 
throughput rate.

b. Sticking control valve stem.
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c. Plugged line in a pressure or differential pressure 
transmitter.

d. Fouled heat exchangers, especially reboilers for 
distillation columns.

e. Cavitating pumps (usually caused by a suction pressure 
that is too low).

The starting point for troubleshooting is to obtain enough 
background information to clearly define the problem. Many 
questions need to be answered:

1. What is the process being controlled?
2. What is the controlled variable?
3. What are the control objectives?
4. Are closed-loop response data available?
5. Is the controller in the manual or automatic mode? Is it 

reverse or direct acting?
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6. If the process is cycling, what is the cycling frequency?
7. What control algorithm is used? What are the controller 

settings?
8. Is the process open-loop stable?
9. What additional documentation is available, such as 

control loop summary sheets, piping and instrumentation 
diagrams, etc.?


