
1

C
ha

pt
er

 3
Laplace Transforms

• Important analytical method for solving linear ordinary
differential equations.

- Application to nonlinear ODEs? Must linearize first.

• Laplace transforms play a key role in important process  
control concepts and techniques.

- Examples: 

• Transfer functions 

• Frequency response

• Control system design

• Stability analysis
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Definition

The Laplace transform of a function, f(t), is defined as

[ ] ( )
0

( ) ( ) (3-1)stF s f t f t e dt
∞ −= = ∫L

where F(s) is the symbol for the Laplace transform, L is the 
Laplace transform operator, and f(t) is some function of time, t.

Note: The L operator transforms a time domain function f(t) 
into an s domain function, F(s). s is a complex variable: 
s = a + bj, 1j −
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Inverse Laplace Transform, L-1:

By definition, the inverse Laplace transform operator, L-1, 
converts an s-domain function back to the corresponding time 
domain function:

( ) ( )1f t F s−  =  L

Important Properties:

Both L and L-1 are linear operators. Thus,

( ) ( ) ( ) ( )
( ) ( ) (3-3)

ax t by t a x t b y t

aX s bY s

     + = +     
= +

L L L
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where:

- x(t) and y(t) are arbitrary functions

- a and b are constants

- ( ) ( ) ( ) ( )X s x t Y s y t      L Land

Similarly,

( ) ( ) ( ) ( )1 aX s bY s ax t b y t−  + = + L
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Laplace Transforms of Common 
Functions

1. Constant Function

Let f(t) = a (a constant). Then from the definition of the 
Laplace transform in (3-1),

( )
0

0

0 (3-4)st sta a aa ae dt e
s s s

∞
∞ − −  = = − = − − = 

 ∫L
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2. Step Function

The unit step function is widely used in the analysis of process
control problems. It is defined as:

( )
0 for 0

(3-5)
1 for 0

t
S t

t
<

 ≥

Because the step function is a special case of a “constant”, it 
follows from (3-4) that

( ) 1 (3-6)S t
s

  = L
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3. Derivatives

This is a very important transform because derivatives appear 
in the ODEs we wish to solve. In the text (p.53), it is shown 
that

( ) ( )0 (3-9)df sF s f
dt

  = −  
L

initial condition at t = 0

Similarly, for higher order derivatives:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2

2 1

0 0

... 0 0 (3-14)

n
n n n

n

n n

d f s F s s f s f
dt

sf f

− −

− −

 
= − − − 

  

− − −

L
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where:

- n is an arbitrary positive integer

- ( ) ( )
0

0
k

k
k

t

d ff
dt =

Special Case: All Initial Conditions are Zero

Suppose Then( )

In process control problems, we usually assume zero initial 
conditions. Reason: This corresponds to the nominal steady state 
when “deviation variables” are used, as shown in Ch. 4.

( ) ( )0 0 ... 0 .f f f= = =( ) ( )1 1n−

( )
n

n
n

d f s F s
dt

 
= 

  
L
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4. Exponential Functions

Consider where b > 0. Then, ( ) btf t e−=

( )

( )

0 0

0

1 1 (3-16)

b s tbt bt st

b s t

e e e dt e dt

e
b s s b

∞ ∞ − +− − −

∞− +

  = = 

 = − =
 + +

∫ ∫L

5. Rectangular Pulse Function

It is defined by:

( )
0 for 0

for 0 (3-20)
0 for

w

w

t
f t h t t

t t

<
= ≤ <
 ≥
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h

( )f t

wt
Time, t

The Laplace transform of the rectangular pulse is given by

( ) ( )1 (3-22)wt shF s e
s

−= −
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6. Impulse Function (or Dirac Delta Function)
The impulse function is obtained by taking the limit of the
rectangular pulse as its width, tw, goes to zero but holding
the area under the pulse constant at one. (i.e., let )

Let,

Then, 

1

w
h

t
=

( )tδ impulse function

( ) 1tδ  = L

Solution of ODEs by Laplace Transforms
Procedure:
1. Take the L of both sides of the ODE.

2. Rearrange the resulting algebraic equation in the s domain to 
solve for the L of the output variable, e.g., Y(s).

3. Perform a partial fraction expansion.
4. Use the L-1 to find y(t) from the expression for Y(s).
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Table 3.1. Laplace Transforms

See page 54 of the text.
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Example 3.1
Solve the ODE,

( )5 4 2 0 1 (3-26)dy y y
dt

+ = =

First, take L of both sides of (3-26),

( )( ) ( ) 25 1 4sY s Y s
s

− + =

Rearrange,

( ) ( )
5 2 (3-34)
5 4
sY s

s s
+

=
+

Take L-1,
( ) ( )

1 5 2
5 4
sy t

s s
−  +

=  + 
L

From Table 3.1,

( ) 0.80.5 0.5 (3-37)ty t e−= +
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Partial Fraction Expansions

Basic idea: Expand a complex expression for Y(s) into 
simpler terms, each of which appears in the Laplace
Transform table. Then you can take the L-1 of both sides of 
the equation to obtain y(t).

Example:

( ) ( )( )
5 (3-41)

1 4
sY s

s s
+

=
+ +

Perform a partial fraction expansion (PFE)

( )( )
1 25 (3-42)

1 4 1 4
s

s s s s
α α+

= +
+ + + +

where coefficients       and       have to be determined.1α 2α
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To find       :  Multiply both sides by s + 1 and let s = -11α

1
1

5 4
4 3s

s
s

α
=−

+
∴ = =

+

To find       :  Multiply both sides by s + 4 and let s = -42α

2
4

5 1
1 3s

s
s

α
=−

+
∴ = = −

+

A General PFE
Consider a general expression,

( ) ( )
( )

( )

( )
1

(3-46a)n
i

i

N s N s
Y s

D s s bπ
=

= =
+
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Here D(s) is an n-th order polynomial with the roots                    
all being real numbers which are distinct so there are no repeated 
roots.

The PFE is:

( )is b= −

( ) ( )

( ) 1
1

(3-46b)
n

i
n

ii
i

i

N s
Y s

s bs b

α

π =
=

= =
+

+
∑

Note: D(s) is called the “characteristic polynomial”.

Special Situations:
Two other types of situations commonly occur when D(s) has:

i) Complex roots: e.g., 
ii) Repeated roots (e.g.,                     )

For these situations, the PFE has a different form. See SEM
text (pp. 61-64) for details.

3b b= = −
( )3 4 1ib j j= ± −

1 2
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Example 3.2 (continued)

Recall that the ODE, , with zero initial 
conditions resulted in the expression

6 11 6 1y y y y+ + + + =

( ) ( )3 2
1 (3-40)

6 11 6
Y s

s s s s
=

+ + +

The denominator can be factored as

( ) ( )( )( )3 26 11 6 1 2 3 (3-50)s s s s s s s s+ + + = + + +

Note: Normally, numerical techniques are required in order to 
calculate the roots.

The PFE for (3-40) is

( ) ( )( )( )
31 2 41 (3-51)

1 2 3 1 2 3
Y s

s s s s s s s s
αα α α

= = + + +
+ + + + + +
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Solve for coefficients to get

1 2 3 4
1 1 1 1, , ,
6 2 2 6

α α α α= = − = = −

(For example, find     , by multiplying both sides by s and then 
setting s = 0.)

α

Substitute numerical values into (3-51):
1/ 6 1/ 2 1/ 2 1/ 6( )

1 2 3
Y s

s s s s
= − + +

+ + +

Take L-1 of both sides:

( )1 1 1 1 11/ 6 1/ 2 1/ 2 1/ 6
1 2 3

Y s
s s s s

− − − − −         = − + +         + + +       
L L L L L

From Table 3.1,

( ) 2 31 1 1 1 (3-52)
6 2 2 6

t t ty t e e e− − −= − + −
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Important Properties of Laplace Transforms

1. Final Value Theorem

It can be used to find the steady-state value of a closed  loop 
system (providing that a steady-state value exists.

Statement of FVT:

( ) ( )
0

limlim
t s

sY sy t
→∞ →

 =  

providing that the limit exists (is finite) for all             
where Re (s) denotes the real part of complex 

variable, s. 
( )Re 0,s ≥
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Example:

Suppose,

( ) ( )
5 2 (3-34)
5 4
sY s

s s
+

=
+

Then,

( ) ( )
0

5 2lim 0.5lim 5 4t s

sy y t
s→∞ →

+ ∞ = = = + 

2. Time Delay

Time delays occur due to fluid flow, time required to do an 
analysis (e.g., gas chromatograph). The delayed signal can be 
represented as

( )θ θ time delayy t − =
Also,

( ) ( )θθ sy t e Y s− − = L
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