Laplace Transforms

- Important analytical method for solving linear ordinary differential equations.
- Application to nonlinear ODEs? Must linearize first.
- Laplace transforms play a key role in important process control concepts and techniques.
- Examples:
- Transfer functions
- Frequency response
- Control system design
- Stability analysis

Definition

The Laplace transform of a function, $f(t)$, is defined as

$$
\begin{equation*}
F(s)=\mathfrak{L}[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{3-1}
\end{equation*}
$$

where $F(s)$ is the symbol for the Laplace transform, \mathfrak{L} is the Laplace transform operator, and $f(t)$ is some function of time, t.

Note: The \mathfrak{L} operator transforms a time domain function $f(t)$ into an s domain function, $F(s)$. s is a complex variable:
$s=a+b j, j \doteq \sqrt{-1}$

Inverse Laplace Transform, \mathfrak{L}^{-1} :

By definition, the inverse Laplace transform operator, \mathfrak{L}^{-1}, converts an s-domain function back to the corresponding time domain function:

$$
f(t)=\mathfrak{S}^{-1}[F(s)]
$$

Important Properties:

Both \mathfrak{L} and \mathfrak{L}^{-1} are linear operators. Thus,

$$
\begin{gather*}
\mathfrak{L}[a x(t)+b y(t)]=a \mathfrak{L}[x(t)]+b \mathfrak{L}[y(t)] \\
=a X(s)+b Y(s) \tag{3-3}
\end{gather*}
$$

where:

- $x(t)$ and $y(t)$ are arbitrary functions
- $\quad a$ and b are constants
- $X(s) \triangleq \mathfrak{L}[x(t)]$ and $Y(s) \triangleq \mathfrak{L}[y(t)]$

Similarly,

$$
\mathfrak{L}^{-1}[a X(s)+b Y(s)]=a x(t)+b y(t)
$$

Laplace Transforms of Common Functions

1. Constant Function

$\oplus \quad$ Let $f(t)=a$ (a constant). Then from the definition of the Laplace transform in (3-1),

$$
\begin{equation*}
\mathfrak{L}(a)=\int_{0}^{\infty} a e^{-s t} d t=-\left.\frac{a}{s} e^{-s t}\right|_{0} ^{\infty}=0-\left(-\frac{a}{s}\right)=\frac{a}{s} \tag{3-4}
\end{equation*}
$$

2. Step Function

The unit step function is widely used in the analysis of process control problems. It is defined as:

$$
S(t) \triangleq\left\{\begin{array}{l}
0 \text { for } t<0 \tag{3-5}\\
1 \quad \text { for } t \geq 0
\end{array}\right.
$$

Because the step function is a special case of a "constant", it follows from (3-4) that

$$
\begin{equation*}
\mathfrak{L}[S(t)]=\frac{1}{S} \tag{3-6}
\end{equation*}
$$

3. Derivatives

This is a very important transform because derivatives appear in the ODEs we wish to solve. In the text (p.53), it is shown that

$$
\begin{equation*}
\mathfrak{L}\left[\frac{d f}{d t}\right]=s F(s)-f(0) \tag{3-9}
\end{equation*}
$$

Similarly, for higher order derivatives:

$$
\begin{align*}
& \mathfrak{L}\left[\frac{d^{n} f}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)- \\
&-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0) \tag{3-14}
\end{align*}
$$

where:

- n is an arbitrary positive integer

$$
-\left.f^{(k)}(0) \triangleq \frac{d^{k} f}{d t^{k}}\right|_{t=0}
$$

Special Case: All Initial Conditions are Zero
Suppose $f(0)=f^{(1)}(0)=\ldots=f^{(n-1)}(0)$. Then

$$
\mathfrak{L}\left[\frac{d^{n} f}{d t^{n}}\right]=s^{n} F(s)
$$

In process control problems, we usually assume zero initial conditions. Reason: This corresponds to the nominal steady state when "deviation variables" are used, as shown in Ch. 4.

4. Exponential Functions

Consider $f(t)=e^{-b t}$ where $b>0$. Then,

$$
\begin{align*}
\mathfrak{L}\left[e^{-b t}\right] & =\int_{0}^{\infty} e^{-b t} e^{-s t} d t=\int_{0}^{\infty} e^{-(b+s) t} d t \\
& =\frac{1}{b+s}\left[-e^{-(b+s) t}\right]_{0}^{\infty}=\frac{1}{s+b} \tag{3-16}
\end{align*}
$$

5. Rectangular Pulse Function

It is defined by:

$$
f(t)= \begin{cases}0 & \text { for } t<0 \tag{3-20}\\ h & \text { for } 0 \leq t<t_{w} \\ 0 & \text { for } t \geq t_{w}\end{cases}
$$

Time, t

The Laplace transform of the rectangular pulse is given by

$$
\begin{equation*}
F(s)=\frac{h}{s}\left(1-e^{-t_{w} s}\right) \tag{3-22}
\end{equation*}
$$

6. Impulse Function (or Dirac Delta Function)

The impulse function is obtained by taking the limit of the rectangular pulse as its width, t_{w}, goes to zero but holding

Let, $\quad \delta(t) \triangleq$ impulse function
Then, $\quad \mathfrak{L}[\delta(t)]=1$

Solution of ODEs by Laplace Transforms

Procedure:

1. Take the \mathfrak{L} of both sides of the ODE.
2. Rearrange the resulting algebraic equation in the s domain to solve for the \mathfrak{L} of the output variable, e.g., $Y(s)$.
3. Perform a partial fraction expansion.
4. Use the \mathfrak{L}^{-1} to find $y(t)$ from the expression for $Y(s)$.

Table 3.1. Laplace Transforms

See page 54 of the text.

Example 3.1

Solve the ODE,

$$
\begin{equation*}
5 \frac{d y}{d t}+4 y=2 \quad y(0)=1 \tag{3-26}
\end{equation*}
$$

First, take \mathfrak{L} of both sides of (3-26),

$$
5(s Y(s)-1)+4 Y(s)=\frac{2}{s}
$$

Rearrange,

$$
\begin{equation*}
Y(s)=\frac{5 s+2}{s(5 s+4)} \tag{3-34}
\end{equation*}
$$

Take \mathfrak{L}^{-1},

$$
y(t)=\mathfrak{L}^{-1}\left[\frac{5 s+2}{s(5 s+4)}\right]
$$

From Table 3.1,

$$
\begin{equation*}
y(t)=0.5+0.5 e^{-0.8 t} \tag{3-37}
\end{equation*}
$$

Partial Fraction Expansions

Basic idea: Expand a complex expression for $Y(s)$ into simpler terms, each of which appears in the Laplace Transform table. Then you can take the \mathfrak{L}^{-1} of both sides of the equation to obtain $y(t)$.

Example:

$$
\begin{equation*}
Y(s)=\frac{s+5}{(s+1)(s+4)} \tag{3-41}
\end{equation*}
$$

Perform a partial fraction expansion (PFE)

$$
\begin{equation*}
\frac{s+5}{(s+1)(s+4)}=\frac{\alpha_{1}}{s+1}+\frac{\alpha_{2}}{s+4} \tag{3-42}
\end{equation*}
$$

where coefficients α_{1} and α_{2} have to be determined.

To find α_{1} : Multiply both sides by $s+1$ and let $s=-1$

$$
\therefore \quad \alpha_{1}=\left.\frac{s+5}{s+4}\right|_{s=-1}=\frac{4}{3}
$$

To find α_{2} : Multiply both sides by $s+4$ and let $s=-4$

$$
\therefore \quad \alpha_{2}=\left.\frac{s+5}{s+1}\right|_{s=-4}=-\frac{1}{3}
$$

A General PFE

Consider a general expression,

$$
\begin{equation*}
Y(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{{\underset{v i n}{i=1}}_{n}\left(s+b_{i}\right)} \tag{3-46a}
\end{equation*}
$$

Here $D(s)$ is an n-th order polynomial with the roots $\left(s=-b_{i}\right)$ all being real numbers which are distinct so there are no repeated roots.

The PFE is:

$$
\begin{equation*}
Y(s)=\frac{N(s)}{\substack{n \\ \pi_{i=1}}}\left(s+b_{i}\right) \quad=\sum_{i=1}^{n} \frac{\alpha_{i}}{s+b_{i}} \tag{3-46b}
\end{equation*}
$$

Note: $D(s)$ is called the "characteristic polynomial".

Special Situations:

Two other types of situations commonly occur when $D(s)$ has:
i) Complex roots: e.g., $b_{i}=3 \pm 4 j \quad(j \triangleq \sqrt{-1})$
ii) Repeated roots (e.g., $b_{1}=b_{2}=-3$)

For these situations, the PFE has a different form. See SEM text (pp. 61-64) for details.

Example 3.2 (continued)

Recall that the ODE, $\dddot{y}++6 \ddot{y}+11 \dot{y}+6 y=1$ with zero initial conditions resulted in the expression

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{3}+6 s^{2}+11 s+6\right)} \tag{3-40}
\end{equation*}
$$

The denominator can be factored as

$$
\begin{equation*}
s\left(s^{3}+6 s^{2}+11 s+6\right)=s(s+1)(s+2)(s+3) \tag{3-50}
\end{equation*}
$$

Note: Normally, numerical techniques are required in order to calculate the roots.

The PFE for (3-40) is

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+1)(s+2)(s+3)}=\frac{\alpha_{1}}{s}+\frac{\alpha_{2}}{s+1}+\frac{\alpha_{3}}{s+2}+\frac{\alpha_{4}}{s+3} \tag{3-51}
\end{equation*}
$$

Solve for coefficients to get

$$
\alpha_{1}=\frac{1}{6}, \quad \alpha_{2}=-\frac{1}{2}, \quad \alpha_{3}=\frac{1}{2}, \quad \alpha_{4}=-\frac{1}{6}
$$

(For example, find α, by multiplying both sides by s and then setting $s=0$.)

Substitute numerical values into (3-51):

$$
Y(s)=\frac{1 / 6}{s}-\frac{1 / 2}{s+1}+\frac{1 / 2}{s+2}+\frac{1 / 6}{s+3}
$$

Take \mathfrak{L}^{-1} of both sides:

$$
\mathfrak{L}^{-1}[Y(s)]=\mathfrak{L}^{-1}\left[\frac{1 / 6}{s}\right]-\mathfrak{L}^{-1}\left[\frac{1 / 2}{s+1}\right]+\mathfrak{L}^{-1}\left[\frac{1 / 2}{s+2}\right]+\mathfrak{L}^{-1}\left[\frac{1 / 6}{s+3}\right]
$$

From Table 3.1,

$$
\begin{equation*}
y(t)=\frac{1}{6}-\frac{1}{2} e^{-t}+\frac{1}{2} e^{-2 t}-\frac{1}{6} e^{-3 t} \tag{3-52}
\end{equation*}
$$

Important Properties of Laplace Transforms

1. Final Value Theorem

It can be used to find the steady-state value of a closed loop system (providing that a steady-state value exists.

Statement of FVT:

$$
\lim _{t \rightarrow \infty} y(t)=\underset{s \rightarrow 0}{\lim [s Y(s)]}
$$

providing that the limit exists (is finite) for all
$\operatorname{Re}(s) \geq 0$, where $\operatorname{Re}(s)$ denotes the real part of complex variable, s.

Example:

Suppose,

$$
\begin{equation*}
Y(s)=\frac{5 s+2}{s(5 s+4)} \tag{3-34}
\end{equation*}
$$

Then,

$$
y(\infty)=\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0}\left[\frac{5 s+2}{5 s+4}\right]=0.5
$$

2. Time Delay

Time delays occur due to fluid flow, time required to do an analysis (e.g., gas chromatograph). The delayed signal can be represented as

$$
y(t-\theta) \quad \theta=\text { time delay }
$$

Also,

$$
\mathfrak{L}[y(t-\theta)]=e^{-\theta s} Y(s)
$$

