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Transfer Functions

• Convenient representation of a linear, dynamic model.

• A transfer function (TF) relates one input and one output:

( )
( )

( )
( )

system
x t y t
X s Y s

→ →

The following terminology is used:

y

output

response

“effect”

x

input

forcing function

“cause”
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Definition of the transfer function:
Let G(s) denote the transfer function between an input, x, and an 
output, y. Then, by definition

( ) ( )
( )

Y s
G s

X s
�

where:

( ) ( )
( ) ( )

Y s y t

X s x t

  
  

�

�

L

L

Development of Transfer Functions

Example: Stirred Tank Heating System
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Figure 2.3 Stirred-tank heating process with constant holdup, V.
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Recall the previous dynamic model, assuming constant liquid 
holdup and flow rates:

( ) (1)i
dTV C wC T T Q
dt

ρ = − +

Suppose the process is initially at steady state:

( ) ( ) ( ) ( )0 , 0 , 0 2i iT T T T Q Q= = =

where         steady-state value of T, etc. For steady-state 
conditions:

T �

( )0 (3)iwC T T Q= − +

Subtract (3) from (1): 

( ) ( ) ( ) (4)i i
dTV C wC T T T T Q Q
dt

ρ  = − − − + − 
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But,

( )
because is a constant (5)

d T TdT T
dt dt

−
=

Thus we can substitute into (4-2) to get,

( ) (6)i
dTV C wC T T Q
dt

ρ
′

′ ′ ′= − +

where we have introduced the following “deviation variables”, 
also called “perturbation variables”:

, , (7)i i iT T T T T T Q Q Q′ ′ ′− − −� � �

Take L of (6):

( ) ( ) ( ) ( ) ( )0 (8)iV C sT s T t wC T s T s Q sρ ′ ′ ′ ′ ′   − = = − −   
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( )0 .T t′ =Evaluate 

By definition,                  Thus at time, t = 0,.T T T′ −�

( ) ( )0 0 (9)T T T′ = −

But since our assumed initial condition was that the process 
was initially at steady state, i.e.,                it follows from (9) 
that 

Note: The advantage of using deviation variables is that the 
initial condition term becomes zero. This simplifies the later 
analysis.

( )0T T=
( )0 0.T ′ =

Rearrange (8) to solve for T s( ) :′

( ) ( ) ( )1 (10)
1 1 i

KT s Q s T s
s sτ τ

   ′ ′ ′= +   + +   
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where two new symbols are defined:

( )1 and 11VK
wC w

ρτ� �

Transfer Function Between     and     Q′ T ′

Suppose     is constant at the steady-state value. Then,   iT

Then we can substitute into 
(10) and rearrange to get the desired TF:   
( ) ( ) ( )0 0.i i i iT t T T t T s′ ′= ⇒ = ⇒ =

( )
( )

(12)
1

T s K
Q s sτ
′

=
′ +
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Transfer Function Between    and     T ′ :iT ′

Suppose that Q is constant at its steady-state value:

( ) ( ) ( )0 0Q t Q Q t Q s′ ′= ⇒ = ⇒ =

Thus, rearranging

( )
( )

1 (13)
1i

T s
T s sτ
′

=
′ +

Comments:

1. The TFs in (12) and (13) show the individual effects of Q and      
on T. What about simultaneous changes in both Q and     ?iT

iT
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• Answer: See (10). The same TFs are valid for simultaneous 

changes.

• Note that (10) shows that the effects of changes in both Q
and     are additive. This always occurs for linear, dynamic 
models (like TFs) because the Principle of Superposition is 
valid.

iT

2. The TF model enables us to determine the output response to 
any change in an input.

3. Use deviation variables to eliminate initial conditions for TF 
models.
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Properties of Transfer Function Models

1. Steady-State Gain

The steady-state of a TF can be used to calculate the steady-
state change in an output due to a steady-state change in the 
input. For example, suppose we know two steady states for an 
input, u, and an output, y. Then we can calculate the steady-
state gain, K, from:

2 1

2 1
(4-38)y yK

u u
−

=
−

For a linear system, K is a constant. But for a nonlinear 
system, K will depend on the operating condition ( ), .u y
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Calculation of K from the TF Model:

If a TF model has a steady-state gain, then:

( )
0

lim (14)
s

K G s
→

=

• This important result is a consequence of the Final Value 
Theorem

• Note: Some TF models do not have a steady-state gain (e.g., 
integrating process in Ch. 5)
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2. Order of a TF Model

Consider a general n-th order, linear ODE:
1

1 1 01

1

1 1 01 (4-39)

n n m

n n mn n m

m

m m

d y dy dy d ua a a a y b
dtdt dt dt

d u dub b b u
dtdt

−

− −

−

− −

+ + + = +

+ + +

…

…

Take L, assuming the initial conditions are all zero. Rearranging 
gives the TF:

( ) ( )
( )

0

0

(4-40)

m
i

i
i
n

i
i

i

b s
Y s

G s
U s

a s

=

=

= =
∑

∑



13

C
ha

pt
er

 4
Definition:

The order of the TF is defined to be the order of the denominator 
polynomial.

Note: The order of the TF is equal to the order of the ODE.

Physical Realizability:
For any physical system,           in (4-38). Otherwise, the system 
response to a step input will be an impulse. This can’t happen.

Example:

n m≥

0 1 0 and step change in (4-41)dua y b b u u
dt

= +



14

C
ha

pt
er

 4
3. Additive Property

Suppose that an output is influenced by two inputs and that 
the transfer functions are known:

( )
( ) ( ) ( )

( ) ( )1 2
1 2

and
Y s Y s

G s G s
U s U s

= =

Then the response to changes in both      and      can be written 
as:

1U 2U

( ) ( ) ( ) ( ) ( )1 1 2 2Y s G s U s G s U s= +

The graphical representation (or block diagram) is:

G1(s)

G2(s)

Y(s)
U1(s)

U2(s)
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4. Multiplicative Property

Suppose that,

( )
( ) ( ) ( )

( ) ( )2
2 3

2 3
and

Y s U s
G s G s

U s U s
= =

Then,
( ) ( ) ( ) ( ) ( ) ( )2 2 2 3 3Y s G s U s and U s G s U s= =

Substitute,

( ) ( ) ( ) ( )2 3 3Y s G s G s U s=

Or,

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 3 2 3

3

Y s
G s G s U s G s G s Y s

U s
=
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Linearization of Nonlinear Models
• So far, we have emphasized linear models which can be   

transformed into TF models.

• But most physical processes and physical models are nonlinear.

- But over a small range of operating conditions, the behavior 
may be approximately linear.

- Conclude: Linear approximations can be useful, especially 
for purpose of analysis.

• Approximate linear models can be obtained analytically by a 
method called “linearization”. It is based on a Taylor Series 
Expansion of a nonlinear function about a specified operating 
point.



17

C
ha

pt
er

 4
• Consider a nonlinear, dynamic model relating two process 

variables, u and y:

( ), (4-60)dy f y u
dt

=

Perform a Taylor Series Expansion about           and           and 
truncate after the first order terms,

u u= y y=

( ) ( ), , (4-61)
y y

f ff u y f u y u y
u y
∂ ∂′ ′= + +
∂ ∂

where                 and                . Note that the partial derivative 
terms are actually constants because they have been evaluated at
the nominal operating point,

Substitute (4-61) into (4-60) gives:

u u u′ = − y y y′ = −

( ), .u y

( ),
y y

dy f ff u y u y
dt u y

∂ ∂′ ′= + +
∂ ∂
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The steady-state version of (4-60) is:

( )0 ,f u y=

,dy dy
dt dt

′
=Substitute into (7) and recall that 

(4-62)
y y

dy f fu y
dt u y
′ ∂ ∂′ ′= +

∂ ∂
Linearized
model

Example: Liquid Storage System

Mass balance:

Valve relation:

A = area, Cv = constant

(1)i
dhA q q
dt

= −

(2)vq C h=

qi

h

q
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Combine (1) and (2),

(3)i v
dhA q C h
dt

= −

Linearize      term,

( )1 (4)
2

h h h h
h

≈ − −

Or

1 (5)h h h
R

′≈ −

where:
2R h

h h h′ −
�
�
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Substitute linearized expression (5) into (3):

1 (6)i v
dhA q C h h
dt R

 ′= − − 
 

The steady-state version of (3) is:

0 (7)i vq C h= −

Subtract (7) from (6) and let                  , noting that    
gives the linearized model:

i i iq q q′ −� dh dh
dt dt

′
=

1 (8)i
dhA q h
dt R
′

′ ′= −
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Summary:

In order to linearize a nonlinear, dynamic model:

1. Perform a Taylor Series Expansion of each nonlinear term 
and truncate after the first-order terms.

2. Subtract the steady-state version of the equation.

3. Introduce deviation variables.
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State-Space Models

• Dynamic models derived from physical principles typically 
consist of one or more ordinary differential equations (ODEs). 

• In this section, we consider a general class of ODE models 
referred to as state-space models.

Consider standard form for a linear state-space model,

(4-90)

(4-91)

�x = Ax + Bu + Ed

y = Cx
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where: 

x = the state vector

u = the control vector of manipulated variables (also called  
control variables) 

d = the disturbance vector 

y = the output vector of measured variables. (We use 
boldface symbols to denote vector and matrices, and 
plain text to represent scalars.) 

• The elements of x are referred to as state variables. 

• The elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d, and y are 
functions of time. 

• The time derivative of x is denoted by 

• Matrices A, B, C, and E are constant matrices.

( )d / d .t=x x�
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Example 4.9
Show that the linearized CSTR model of Example 4.8 can
be written in the state-space form of Eqs. 4-90 and 4-91.
Derive state-space models for two cases:

(a) Both cA and T are measured.

(b) Only T is measured.

Solution

The linearized CSTR model in Eqs. 4-84 and 4-85 can be written 
in vector-matrix form:

11 12

21 22 2

0
(4-92)

A A

s

dc a a c
dt T

dT
a a T b

dt

′  ′             ′= +       ′  ′            
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Let             and           , and denote their time derivatives by       
and     . Suppose that the steam temperature Ts can be 
manipulated. For this situation, there is a scalar control variable,      

, and no modeled disturbance. Substituting these 
definitions into (4-92) gives,

1 Ax c′� 2x T ′� 1x�
2x�

su T ′�

N

1 11 12 1

2 21 22 2 2

0
(4-93)

x a a x
u

x a a x b
       

= +       
       

�
�

��	�

BA

which is in the form of Eq. 4-90 with x = col [x1, x2]. (The symbol 
“col” denotes a column vector.)
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a) If both T and cA are measured, then y = x, and C = I in              

Eq. 4-91, where I denotes the 2x2 identity matrix. A and B are 
defined in (4-93).

b) When only T is measured, output vector y is a scalar,         
and C is a row vector, C = [0,1].y T ′=

Note that the state-space model for Example 4.9 has d = 0
because disturbance variables were not included in (4-92). By 
contrast, suppose that the feed composition and feed temperature
are considered to be disturbance variables in the original 
nonlinear CSTR model in Eqs. 2-60 and 2-64. Then the linearized
model would include two additional deviation variables,         
and     .

Aic′
iT ′
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