
1

C
ha

pt
er

 6
More General Transfer Function Models
• Poles and Zeros:

• The dynamic behavior of a transfer function model can be 
characterized by the numerical value of its poles and zeros.

• General Representation of ATF:

There are two equivalent representations:

( ) 0

0

(4-40)

m
i

i
i
n

i
i

i

b s
G s

a s

=

=

=
∑

∑
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( ) ( )( ) ( )
( )( ) ( )

1 2

1 2
(6-7)m m

n n

b s z s z s z
G s

a s p s p s p
− − −

=
− − −

…
…

where {zi} are the “zeros” and {pi} are the “poles”.

• We will assume that there are no “pole-zero” calculations. That 
is, that no pole has the same numerical value as a zero.

• Review: in order to have a physically realizable system.n m≥
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Example 6.2
For the case of a single zero in an overdamped second-order 
transfer function,

( ) ( )
( )( )1 2

τ 1
(6-14)

τ 1 τ 1
aK s

G s
s s

+
=

+ +

calculate the response to the step input of magnitude M and plot 
the results qualitatively.

Solution

The response of this system to a step change in input is

( ) 1 2
τ τ τ τ/ τ / τ1 21 (6-15)
τ τ τ τ1 2 2 1

t ta ay t KM e e
 − −− −= + + − − 
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Note that                              as expected; hence, the effect of 
including the single zero does not change the final value nor does 
it change the number or location of the response modes. But the 
zero does affect how the response modes (exponential terms) are 
weighted in the solution, Eq. 6-15.

( )y t KM→ ∞ =

A certain amount of mathematical analysis (see Exercises 6.4, 6.5, 
and 6.6) will show that there are three types of responses involved 
here:

Case a:

Case b:

Case c:

1τ τa >

10 τ τa< ≤

τ 0a <
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1. Poles

• Pole in “right half plane (RHP)”: results in unstable system 
(i.e., unstable step responses)

( )1

p a bj

j

= +

= −
x

x

x

Real axis

Imaginary axis

x = unstable pole

• Complex pole: results in oscillatory responses

Real axis

Imaginary axis

x

x x = complex poles

Summary: Effects of Pole and Zero Locations
C

ha
pt

er
 6
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2. Zeros

• Pole at the origin (1/s term in TF model): results in an 
“integrating process”

Note: Zeros have no effect on system stability.

• Zero in RHP: results in an inverse response to a step change in 
the input

• Zero in left half plane: may result in “overshoot” during a step 
response (see Fig. 6.3).

x ⇒ y        0

t

inverse 
response

Real 
axis

Imaginary axis

C
ha

pt
er

 6



8

Inverse Response Due to Two Competing Effects
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An inverse response occurs if:

2 2

1 1

τ (6-22)
τ

K
K

− >
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Time Delays

Time delays occur due to:
1. Fluid flow in a pipe

2. Transport of solid material (e.g., conveyor belt)

3. Chemical analysis

- Sampling line delay

- Time required to do the analysis (e.g., on-line gas 
chromatograph)

Mathematical description:

A time delay,   , between an input u and an output y results in the 
following expression:

θ

( ) ( )
0 for θ

(6-27)
θ for θ

t
y t

u t t
<

=  − ≥



10

C
ha

pt
er

 6
Example: Turbulent flow in a pipe

Let,        fluid property (e.g., temperature or composition) at
point 1

fluid property at point 2

u

y

Assume that the velocity profile is “flat”, that is, the velocity 
is uniform over the cross-sectional area. This situation is 
analyzed in Example 6.5 and Fig. 6.6.

Fluid In

Point 1

Fluid Out

Figure 6.5
Point 2
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Example 6.5
For the pipe section illustrated in Fig. 6.5, find the transfer 
functions: 
(a) relating the mass flow rate of liquid at 2, w2, to the mass flow 

rate of liquid at 1, wt, 

(b) relating the concentration of a chemical species at 2 to the
concentration at 1. Assume that the liquid is incompressible.

Solution

(a) First we make an overall material balance on the pipe 
segment in question. Since there can be no accumulation 
(incompressible fluid),

material in = material out ⇒ =( ) ( )1 2w t w t
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Putting (6-30) in deviation form and taking Laplace transforms 
yields the transfer function,

( )
( )

2

1
1

W s
W s

′
=

′

(b) Observing a very small cell of material passing point 1 at time 
t, we note that in contains Vc1(t) units of the chemical species of 
interest where V is the total volume of material in the cell. If, at 
time t +  , the cell passes point 2, it contains                units of 
the species. If the material moves in plug flow, not mixing at all 
with adjacent material, then the amount of species in the cell is 
constant: 

θ ( )2 θVc t +

( ) ( )2 1θ (6-30)Vc t Vc t+ =

or
( ) ( )2 1θ (6-31)c t c t+ =
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An equivalent way of writing (6-31) is

( ) ( )2 1 θ (6-32)c t c t= −

if the flow rate is constant. Putting (6-32) in deviation form and 
taking Laplace transforms yields
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( )
( )

2 θ

1
(6-33)sC s

e
C s

−′
=

′

Time Delays (continued)
Transfer Function Representation:

( )
( )

θ (6-28)sY s
e

U s
−=

Note that     has units of time (e.g., minutes, hours)θ
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Polynomial Approximations to θ :se−

For purposes of analysis using analytical solutions to transfer 
functions, polynomial approximations for         are commonly 
used. Example: simulation software such as MATLAB and 
MatrixX.

θse−

Two widely used approximations are:

1. Taylor Series Expansion:
2 2 3 3 4 4

θ θ θ θ1 θ (6-34)
2! 3! 4!

s s s se s− = − + − + +…

The approximation is obtained by truncating after only a few 
terms.
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2. Padé Approximations:

Many are available. For example, the 1/1 approximation is,

θ

θ1
2 (6-35)θ1
2

s
s

e
s

−
−

≈
+

Implications for Control:

Time delays are very bad for control because they involve a 
delay of information.
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Interacting vs. Noninteracting Systems

• Consider a process with several invariables and several output 
variables. The process is said to be interacting if:

o Each input affects more than one output.
or

o A change in one output affects the other outputs.

Otherwise, the process is called noninteracting.

• As an example, we will consider the two liquid-level storage 
systems shown in Figs. 4.3 and 6.13.

• In general, transfer functions for interacting processes are more 
complicated than those for noninteracting processes.
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Figure 4.3. A noninteracting system:
two surge tanks in series.
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Figure 6.13. Two tanks in series whose liquid levels interact.
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Figure 4.3. A noninteracting system:
two surge tanks in series.
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1
1 1 (4-48)i

dhA q q
dt

= −Mass Balance:

Valve Relation: 1 1
1

1 (4-49)q h
R

=

Substituting (4-49) into (4-48) eliminates q1:

1
1 1

1

1 (4-50)i
dhA q h
dt R

= −
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Putting (4-49) and (4-50) into deviation variable form gives

1
1 1

1

1 (4-51)i
dhA q h
dt R

′
′ ′= −

1 1
1

1 (4-52)q h
R

′ ′=

The transfer function relating            to            is found by 
transforming (4-51) and rearranging to obtain

( )1H s′ ( )1iQ s′

( )
( )

1 1 1

1 1 1
(4-53)

1 τ 1i

H s R K
Q s A R s s

′
= =

′ + +

where              and                  Similarly, the transfer function 
relating           to             is obtained by transforming (4-52).

1 1K R 1 1 1τ .A R
( )1Q s′ ( )1H s′
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( )
( )

1

1 1 1

1 1 (4-54)
Q s
H s R K

′
= =

′

The same procedure leads to the corresponding transfer functions
for Tank 2,

( )
( )

2 2 2

2 2 2 2
(4-55)

1 τ 1
H s R K
Q s A R s s

′
= =

′ + +
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( )
( )

2

2 2 2

1 1 (4-56)
Q s
H s R K

′
= =

′

where               and                  Note that the desired transfer 
function relating the outflow from Tank 2 to the inflow to Tank 1 
can be derived by forming the product of (4-53) through (4-56).

2 2K R 2 2 2.τ A R
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2 1 1

2 1 1
(4-57)

i i

Q s Q s H s Q s H s
Q s H s Q s H s Q s

′ ′ ′ ′ ′
=

′ ′ ′ ′ ′

or

( )
( )

2 2 1

2 2 1 1

1 1 (4-58)
τ 1 τ 1i

Q s K K
Q s K s K s

′
=

′ + +

which can be simplified to yield

( )
( ) ( )( )

2

1 2

1 (4-59)
τ 1 τ 1i

Q s
Q s s s

′
=

′ + +

a second-order transfer function (does unity gain make sense on 
physical grounds?). Figure 4.4 is a block diagram showing 
information flow for this system.
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Block Diagram for Noninteracting
Surge Tank System

Figure 4.4. Input-output model for two liquid surge tanks in 
series.
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Dynamic Model of An Interacting Process
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Figure 6.13. Two tanks in series whose liquid levels interact.

( )1 1 2
1

1 (6-70)q h h
R

= −

The transfer functions for the interacting system are:
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( )
( )

( )
( )

( )
( )

( )

( )

2 2
2 2

2
2 2

1 1
2 2

1 2 2 1
1 2 1 2 2 1 2

1 2

(6-74)
τ 2ζτ 1

1
τ 2ζτ 1

τ 1
(6-72)

τ 2ζτ 1
where

τ ττ= τ τ , ζ , and τ /
2 τ τ

i

i

a

i

a

H s R
Q s s s

Q s
Q s s s

H s K s
Q s s s

R A R R A R R

′
=

′ + +

′
=

′ + +

′ ′ +
=

′ + +

+ +
+
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In  Exercise 6.15, the reader can show that ζ>1 by analyzing the 
denominator of (6-71); hence, the transfer function is 
overdamped, second order, and has a negative zero. 
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Model Comparison
• Noninteracting system

( )
( ) ( )( )

1 1 1 2 2 2

2

1 2

where τ and τ .

1 (4-59)
τ 1 τ 1i

A R A R

Q s
Q s s s

′
=

′ + +

• Interacting system
( )
( )

1 2

2
2 2

where ζ 1 and τ τ τ

1
τ 2ζτ 1i

Q s
Q s s s

>

′
=

′ + +

• General Conclusions
1. The interacting system has a slower response.

(Example: consider the special case where τ = τ1= τ2.)
2. Which two-tank system provides the best damping

of inlet flow disturbances?
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Approximation of Higher-Order 

Transfer Functions
In this section, we present a general approach for 
approximating high-order transfer function models with 
lower-order models that have similar dynamic and steady-state 
characteristics.

In Eq. 6-4 we showed that the transfer function for a time 
delay can be expressed as a Taylor series expansion. For small 
values of s,

0θ
01 θ (6-57)se s− ≈ −
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• An alternative first-order approximation consists of the transfer 
function,

0

0

θ
θ

0

1 1 (6-58)
1 θ

s
se

se
− = ≈

+

where the time constant has a value of

• Equations 6-57 and 6-58 were derived to approximate time-
delay terms. 

• However, these expressions can also be used to approximate 
the pole or zero term on the right-hand side of the equation by 
the time-delay term on the left side. 

0θ .
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Skogestad’s “half rule”

• Skogestad (2002) has proposed a related approximation method 
for higher-order models that contain multiple time constants. 

• He approximates the largest neglected time constant in the 
following manner. 

• One half of its value is added to the existing time delay (if any) 
and the other half is added to the smallest retained time 
constant. 

• Time constants that are smaller than the “largest neglected time
constant” are approximated as time delays using (6-58).
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( ) ( )
( )( )( )

0.1 1
(6-59)

5 1 3 1 0.5 1
K s

G s
s s s

− +
=

+ + +

( )
θ

(6-60)
τ 1

sKeG s
s

−
=

+
using two methods:

(a) The Taylor series expansions of Eqs. 6-57 and 6-58.

(b) Skogestad’s half rule
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Compare the normalized responses of G(s) and the approximate 
models for a unit step input.

Example 6.4

Consider a transfer function:

Derive an approximate first-order-plus-time-delay model,
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Solution

(a) The dominant time constant (5) is retained. Applying
the approximations in (6-57) and (6-58) gives:

0.10.1 1 (6-61)ss e−− + ≈

and

3 0.51 1 (6-62)
3 1 0.5 1

s se e
s s

− −≈ ≈
+ +

Substitution into (6-59) gives the Taylor series 
approximation, ( ) :TSG s

( )
0.1 3 0.5 3.6

(6-63)
5 1 5 1

s s s s

TS
Ke e e KeG s

s s

− − − −
= =

+ +
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(b) To use Skogestad’s method, we note that the largest neglected 
time constant in (6-59) has a value of three.  

θ 1.5 0.1 0.5 2.1= + + =
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• According to his “half rule”, half of this value is added to the
next largest time constant to generate a new time constant

• The other half provides a new time delay of 0.5(3) = 1.5. 
• The approximation of the RHP zero in (6-61) provides an 

additional time delay of 0.1. 
• Approximating the smallest time constant of 0.5 in (6-59) by 

(6-58) produces an additional time delay of 0.5. 
• Thus the total time delay in (6-60) is, 

τ 5 0.5(3) 6.5.= + =
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and G(s) can be approximated as:

( )
2.1

(6-64)
6.5 1

s

Sk
KeG s

s

−
=

+

The normalized step responses for G(s) and the two approximate 
models are shown in Fig. 6.10. Skogestad’s method provides 
better agreement with the actual response.

Figure 6.10 
Comparison of the 
actual and 
approximate models 
for Example 6.4.
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Example 6.5
Consider the following transfer function:

( ) ( )
( )( )( )( )

1
(6-65)

12 1 3 1 0.2 1 0.05 1

sK s e
G s

s s s s

−−
=

+ + + +

Use Skogestad’s method to derive two approximate models:

(a) A first-order-plus-time-delay model in the form of (6-60)

(b) A second-order-plus-time-delay model in the form:

( ) ( )( )
θ

1 2
(6-66)

τ 1 τ 1

sKeG s
s s

−
=

+ +
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Compare the normalized output responses for G(s) and the 
approximate models to a unit step input.
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Solution

(a) For the first-order-plus-time-delay model, the dominant time 
constant (12) is retained. 

3.0θ 1 0.2 0.05 1 3.75
2
3.0τ 12 13.5
2

= + + + + =

= + =
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• One-half of the largest neglected time constant (3) is allocated 
to the retained time constant and one-half to the approximate 
time delay. 

• Also, the small time constants (0.2 and 0.05) and the zero (1) are 
added to the original time delay. 

• Thus the model parameters in (6-60) are:
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(b)  An analogous derivation for the second-order-plus-time-delay 
model gives:

1 2

0.2θ 1 0.05 1 2.15
2

τ 12, τ 3 0.1 3.1

= + + + =

= = + =

In this case, the half rule is applied to the third largest time
constant (0.2). The normalized step responses of the original and 
approximate transfer functions are shown in Fig. 6.11.
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Multiple-Input, Multiple Output 
(MIMO) Processes
• Most industrial process control applications involved a number 

of input (manipulated) and output (controlled) variables.

• These applications often are referred to as multiple-input/ 
multiple-output (MIMO) systems to distinguish them from the 
simpler single-input/single-output (SISO) systems that have 
been emphasized so far. 

• Modeling MIMO processes is no different conceptually than 
modeling SISO processes.
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• For example, consider the system illustrated in Fig. 6.14. 

• Here the level h in the stirred tank and the temperature T are to 
be controlled by adjusting the flow rates of the hot and cold 
streams wh and wc, respectively. 

• The temperatures of the inlet streams Th and Tc represent 
potential disturbance variables. 

• Note that the outlet flow rate w is maintained constant and the 
liquid properties are assumed to be constant in the following 
derivation.

(6-88)
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Figure 6.14. A multi-input, multi-output thermal mixing process.
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