Development of Empirical Models From Process Data

- In some situations it is not feasible to develop a theoretical (physically-based model) due to:

1. Lack of information
2. Model complexity
3. Engineering effort required.

- An attractive alternative: Develop an empirical dynamic model from input-output data.
- Advantage: less effort is required
- Disadvantage: the model is only valid (at best) for the range of data used in its development.
i.e., empirical models usually don't extrapolate very well.

Simple Linear Regression: Steady-State Model

- As an illustrative example, consider a simple linear model between an output variable y and input variable u,

$$
y=\beta_{1}+\beta_{2} u+\varepsilon
$$

where β_{1} and β_{2} are the unknown model parameters to be estimated and ε is a random error.

- Predictions of y can be made from the regression model,

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{1}+\hat{\beta}_{2} u \tag{7-3}
\end{equation*}
$$

where $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ denote the estimated values of β_{1} and β_{2}, and \hat{y} denotes the predicted value of y.

- Let Y denote the measured value of y. Each pair of $\left(u_{i}, Y_{i}\right)$ observations satisfies:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} u_{i}+\varepsilon_{i} \tag{7-1}
\end{equation*}
$$

The Least Squares Approach

- The least squares method is widely used to calculate the values of β_{1} and β_{2} that minimize the sum of the squares of the errors S for an arbitrary number of data points, N :

$$
\begin{equation*}
S=\sum_{i=1}^{N} \varepsilon_{1}^{2}=\sum_{i=1}^{N}\left(Y_{i}-\beta_{1}-\beta_{2} u_{i}\right)^{2} \tag{7-2}
\end{equation*}
$$

- Replace the unknown values of β_{1} and β_{2} in (7-2) by their estimates. Then using (7-3), S can be written as:

$$
S=\sum_{i=1}^{N} e_{i}^{2}
$$

where the i-th residual, e_{i}, is defined as,

$$
\begin{equation*}
e_{i} \triangleq Y_{i}-\hat{y}_{i} \tag{7-4}
\end{equation*}
$$

The Least Squares Approach (continued)

- The least squares solution that minimizes the sum of squared errors, S, is given by:

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{S_{u u} S_{y}-S_{u y} S_{u}}{N S_{u u}-\left(S_{u}\right)^{2}} \tag{7-5}\\
& \hat{\beta}_{2}=\frac{N S_{u y}-S_{u} S_{y}}{N S_{u u}-\left(S_{u}\right)^{2}} \tag{7-6}
\end{align*}
$$

where:

$$
S_{u} \underline{\Delta} \sum_{i=1}^{N} u_{i} \quad S_{u u} \underline{\Delta} \sum_{i=1}^{N} u_{i}^{2} \quad S_{y} \Delta \sum_{i=1}^{N} Y_{i} \quad S_{u y} \Delta \sum_{i=1}^{N} u_{i} Y_{i}
$$

Extensions of the Least Squares Approach

- Least squares estimation can be extended to more general models with:

1. More than one input or output variable.
2. Functionals of the input variables u, such as polynomials and exponentials, as long as the unknown parameters appear linearly.

- A general nonlinear steady-state model which is linear in the parameters has the form,

$$
\begin{equation*}
y=\sum_{j=1}^{p} \beta_{j} X_{j}+\varepsilon \tag{7-7}
\end{equation*}
$$

where each X_{j} is a nonlinear function of u.

The sum of the squares function analogous to (7-2) is

$$
\begin{equation*}
S=\sum_{i=1}^{N}\left(Y_{i}-\sum_{j=1}^{p} \beta_{j} X_{i j}\right)^{2} \tag{7-8}
\end{equation*}
$$

which can be written as,

$$
\begin{equation*}
S=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \tag{7-9}
\end{equation*}
$$

where the superscript T denotes the matrix transpose and:

$$
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right]
$$

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
X_{11} & X_{12} & \cdots & X_{1 p} \\
X_{21} & X_{22} & \cdots & X_{2 p} \\
\vdots & \vdots & & \vdots \\
X_{n 1} & X_{n 2} & \cdots & X_{n p}
\end{array}\right]
$$

The least squares estimates $\hat{\beta}$ is given by,

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{Y} \tag{7-10}
\end{equation*}
$$

providing that matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ is nonsingular so that its inverse exists. Note that the matrix \boldsymbol{X} is comprised of functions of u_{j}; for example, if:

$$
y=\beta_{1}+\beta_{2} u+\beta_{3} u^{2}+\varepsilon
$$

This model is in the form of (7-7) if $X_{1}=1, X_{2}=u$, and $X_{3}=u^{2}$.

Fitting First and Second-Order Models
 Using Step Tests

- Simple transfer function models can be obtained graphically from step response data.
- A plot of the output response of a process to a step change in input is sometimes referred to as a process reaction curve.
- If the process of interest can be approximated by a first- or second-order linear model, the model parameters can be obtained by inspection of the process reaction curve.
- The response of a first-order model, $Y(s) / U(s)=K /(\tau s+1)$, to a step change of magnitude M is:

$$
\begin{equation*}
y(t)=K M\left(1-e^{-t / \tau}\right) \tag{5-18}
\end{equation*}
$$

- The initial slope is given by:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{y}{K M}\right)_{t=0}=\frac{1}{\tau} \tag{7-15}
\end{equation*}
$$

- The gain can be calculated from the steady-state changes in u and y :

$$
K=\frac{\Delta y}{\Delta u}=\frac{\Delta y}{M}
$$

where Δy is the steady-state change in y.

Figure 7.3 Step response of a first-order system and graphical constructions used to estimate the time constant, τ.

First-Order Plus Time Delay Model

$$
G(s)=\frac{K e^{-\theta} s}{\tau s+1}
$$

For this FOPTD model, we note the following characteristics of its step response:

1. The response attains 63.2% of its final response at time, $t=\tau+\theta$.
2. The line drawn tangent to the response at maximum slope $(t=\theta)$ intersects the $y / K M=1$ line at $(t=\tau+\theta)$.
3. The step response is essentially complete at $t=5 \tau$. In other words, the settling time is $t_{s}=5 \tau$.

Figure 7.5 Graphical analysis of the process reaction curve to obtain parameters of a first-order plus time delay model.

There are two generally accepted graphical techniques for determining model parameters τ, θ, and K.

Method 1: Slope-intercept method
First, a slope is drawn through the inflection point of the process reaction curve in Fig. 7.5. Then τ and θ are determined by inspection.

Alternatively, τ can be found from the time that the normalized response is 63.2% complete or from determination of the settling time, t_{s}. Then set $\tau=t_{s} / 5$.

Method 2. Sundaresan and Krishnaswamy's Method
This method avoids use of the point of inflection construction entirely to estimate the time delay.

Sundaresan and Krishnaswamy's Method

- They proposed that two times, t_{1} and t_{2}, be estimated from a step response curve, corresponding to the 35.3% and 85.3% response times, respectively.
- The time delay and time constant are then estimated from the following equations:

$$
\begin{gather*}
\theta=1.3 t_{1}-0.29 t_{2} \\
\tau=0.67\left(t_{2}-t_{1}\right) \tag{7-19}
\end{gather*}
$$

- These values of θ and τ approximately minimize the difference between the measured response and the model, based on a correlation for many data sets.

Estimating Second-order Model Parameters Using Graphical Analysis

- In general, a better approximation to an experimental step response can be obtained by fitting a second-order model to the data.
- Figure 7.6 shows the range of shapes that can occur for the step response model,

$$
\begin{equation*}
G(s)=\frac{K}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \tag{5-39}
\end{equation*}
$$

- Figure 7.6 includes two limiting cases: $\tau_{2} / \tau_{1}=0$, where the system becomes first order, and $\tau_{2} / \tau_{1}=1$, the critically damped case.
- The larger of the two time constants, τ_{1}, is called the dominant time constant.

Figure 7.6 Step response for several overdamped secondorder systems.

Smith's Method

- Assumed model:

$$
G(s)=\frac{K e^{-\theta s}}{\tau^{2} s^{2}+2 \zeta \tau s+1}
$$

- Procedure:

1. Determine t_{20} and t_{60} from the step response.
2. Find ζ and t_{60} / τ from Fig. 7.7.
3. Find t_{60} / τ from Fig. 7.7 and then calculate τ (since t_{60} is known).

Figure 7.7. Smith's method: relationship of ζ and τ to t_{20} and t_{60}.

Fitting an Integrator Model to Step Response Data

In Chapter 5 we considered the response of a first-order process to a step change in input of magnitude M :

$$
\begin{equation*}
y_{1}(t)=K \mathrm{M}\left(1-e^{-t / \tau}\right) \tag{5-18}
\end{equation*}
$$

For short times, $t<\tau$, the exponential term can be approximated by

$$
e^{-t / \tau} \approx 1-\frac{t}{\tau}
$$

so that the approximate response is:

$$
\begin{equation*}
y_{1}(t) \approx K \mathrm{M}\left[1-\left(1-\frac{t}{\tau}\right)\right]=\frac{K \mathrm{M}}{\tau} t \tag{7-22}
\end{equation*}
$$

is virtually indistinguishable from the step response of the integrating element

$$
\begin{equation*}
G_{2}(s)=\frac{K_{2}}{s} \tag{7-23}
\end{equation*}
$$

In the time domain, the step response of an integrator is

$$
\begin{equation*}
y_{2}(t)=K_{2} M t \tag{7-24}
\end{equation*}
$$

Hence an approximate way of modeling a first-order process is to find the single parameter

$$
\begin{equation*}
K_{2}=\frac{K}{\tau} \tag{7-25}
\end{equation*}
$$

that matches the early ramp-like response to a step change in input.

If the original process transfer function contains a time delay (cf. Eq. 7-16), the approximate short-term response to a step input of magnitude M would be

$$
y(t)=\frac{K M}{t}(t-\theta) S(t-\theta)
$$

where $S(t-\theta)$ denotes a delayed unit step function that starts at $t=\theta$.

Figure 7.10. Comparison of step responses for a FOPTD model (solid line) and the approximate integrator plus time delay model (dashed line).

Development of Discrete-Time Dynamic Models

- A digital computer by its very nature deals internally with discrete-time data or numerical values of functions at equally spaced intervals determined by the sampling period.
- Thus, discrete-time models such as difference equations are widely used in computer control applications.
- One way a continuous-time dynamic model can be converted to discrete-time form is by employing a finite difference approximation.
- Consider a nonlinear differential equation,

$$
\begin{equation*}
\frac{d y(t)}{d t}=f(y, u) \tag{7-26}
\end{equation*}
$$

where y is the output variable and u is the input variable.

- This equation can be numerically integrated (though with some error) by introducing a finite difference approximation for the derivative.
- For example, the first-order, backward difference approximation to the derivative at $t=k \Delta t$ is

$$
\begin{equation*}
\frac{d y}{d t} \cong \frac{y(k)-y(k-1)}{\Delta t} \tag{7-27}
\end{equation*}
$$

where Δt is the integration interval specified by the user and $y(k)$ denotes the value of $y(t)$ at $t=k \Delta t$. Substituting Eq. 7-26 into (7-27) and evaluating $f(y, u)$ at the previous values of y and u (i.e., $y(k-1)$ and $u(k-1)$) gives:

$$
\begin{align*}
& \frac{y(k)-y(k-1)}{\Delta t} \cong f(y(k-1), u(k-1)) \tag{7-28}\\
& y(k)=y(k-1)+\Delta t f(y(k-1), u(k-1)) \tag{7-29}
\end{align*}
$$

Second-Order Difference Equation Models

- Parameters in a discrete-time model can be estimated directly from input-output data based on linear regression.
- This approach is an example of system identification (Ljung, 1999).
- As a specific example, consider the second-order difference equation in (7-36). It can be used to predict $y(k)$ from data available at time $(k-1) \Delta t$ and $(k-2) \Delta t$.
$y(k)=a_{1} y(k-1)+a_{2} y(k-2)+b_{1} u(k-1)+b_{2} u(k-2)$
- In developing a discrete-time model, model parameters a_{1}, a_{2}, b_{1}, and b_{2} are considered to be unknown.
- This model can be expressed in the standard form of Eq. 7-7,

$$
\begin{equation*}
y=\sum_{j=1}^{p} \beta_{j} X_{j}+\varepsilon \tag{7-7}
\end{equation*}
$$

by defining:

$$
\begin{aligned}
& \beta_{1} \triangleq a_{1}, \quad \beta_{2} \triangleq a_{2}, \quad \beta_{3} \triangleq b_{1}, \quad \beta_{4} \triangleq b_{2} \\
& X_{1} \triangleq y(k-1), \quad X_{2} \triangleq y(k-2), \\
& X_{3} \triangleq u(k-1), \quad X_{4} \triangleq u(k-2)
\end{aligned}
$$

- The parameters are estimated by minimizing a least squares error criterion:

$$
\begin{equation*}
S=\sum_{i=1}^{N}\left(Y_{i}-\sum_{j=1}^{p} \beta_{j} X_{i j}\right)^{2} \tag{7-8}
\end{equation*}
$$

Equivalently, S can be expressed as,

$$
\begin{equation*}
S=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \tag{7-9}
\end{equation*}
$$

where the superscript T denotes the matrix transpose and:

$$
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right]
$$

The least squares solution of (7-9) is:

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{Y} \tag{7-10}
\end{equation*}
$$

