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Development of Empirical Models 

From Process Data
• In some situations it is not feasible to develop a theoretical 

(physically-based model) due to:
1. Lack of information
2. Model complexity
3. Engineering effort required.

• An attractive alternative: Develop an empirical dynamic 
model from input-output data.

• Advantage: less effort is required

• Disadvantage: the model is only valid (at best) for the 
range  of data used in its development. 

i.e., empirical models usually don’t extrapolate very 
well.
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Simple Linear Regression: Steady-State Model
• As an illustrative example, consider a simple linear model 

between an output variable y and input variable u,

where       and       are the unknown model parameters to be 
estimated and ε is a random error. 

• Predictions of y can be made from the regression model,

C
ha

pt
er

 7

ŷ

1 2β β εy u= + +

1β 2β

1 2
ˆ ˆˆ β β (7-3)y u= +

where       and       denote the estimated values of β1 and β2, 
and       denotes the predicted value of y.

1β̂ 2β̂

1 2β β ε (7-1)i i iY u= + +

• Let Y denote the measured value of y. Each pair of (ui, Yi) 
observations satisfies:
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( )22
1 1 2

1 1
ε β β (7-2)

N N

i i
i i

S Y u
= =

= = − −∑ ∑

• The least squares method is widely used to calculate the 
values of β1 and β2 that minimize the sum of the squares of 
the errors S for an arbitrary number of data points, N:

• Replace the unknown values of β1 and β2 in (7-2) by their 
estimates. Then using (7-3), S can be written as:

2

1

where the -th residual, , is defined as,
ˆ (7 4)

N

i
i

i

i i i

S e

i e
e Y y

=
=

− −

∑

The Least Squares Approach
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• The least squares solution that minimizes the sum of 
squared errors, S, is given by:

( )
1 2β̂ (7-5)uu y uy u

uu u

S S S S

NS S

−
=

−

( )
2 2β̂ (7-6)uy u y

uu u

NS S S

NS S

−
=

−

where:

2

1 1

N N

u i uu i
i i

S u S u
= =

∆ ∆∑ ∑
1 1

N N

y i uy i i
i i

S Y S u Y
= =

∆ ∆∑ ∑

The Least Squares Approach (continued)
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• Least squares estimation can be extended to more general
models with:

1. More than one input or output variable.

2. Functionals of the input variables u, such as poly-
nomials and exponentials, as long as the unknown 
parameters appear linearly.

• A general nonlinear steady-state model which is linear in the 
parameters has the form,

1
β ε (7-7)

p

j j
j

y X
=

= +∑

Extensions of the Least Squares Approach

where each Xj is a nonlinear function of u. 
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The sum of the squares function analogous to (7-2) is

2

1 1
β (7-8)

pN

i j ij
i j

S Y X
= =

 
= − 

 
 

∑ ∑

which can be written as,

( ) ( ) (7-9)TS = −β βY - X Y X

where the superscript T denotes the matrix transpose and:

1 1β

βn p

Y

Y

  
  = =   
     

βY
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( ) 1ˆ (7-10)
−

=β T TX X X Y

providing that matrix XTX is nonsingular so that its inverse exists. 
Note that the matrix X is comprised of functions of uj; for 
example, if:

2
1 2 3β β β εy u u= + + +

This model is in the form of (7-7)  if  X1 = 1, X2 = u, and
X3 = u2.
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• Simple transfer function models can be obtained graphically 
from step response data.

• A plot of the output response of a process to a step change in 
input is sometimes referred to as a process reaction curve.

• If the process of interest can be approximated by a first- or 
second-order linear model, the model parameters can be 
obtained by inspection of the process reaction curve.

• The response of a first-order model, Y(s)/U(s)=K/(τs+1), to 
a step change of magnitude M is: 

( ) /(1 ) (5-18)ty t KM e τ−= −

Fitting First and Second-Order Models 
Using Step Tests



9

C
ha

pt
er

 7 0

1 (7-15)
τt

d y
dt KM =

  = 
 

• The initial slope is given by:

• The gain can be calculated from the steady-state changes
in u and y:

where ∆ is the steady-state change in .

y yK
u M

y y

∆ ∆
= =

∆
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Figure 7.3 Step response of a first-order system and 
graphical constructions used to estimate the time constant, τ.
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First-Order Plus Time Delay Model
-θ

( )
τ 1
Ke sG s

s
=

+

For this FOPTD model, we note the following charac-
teristics of its step response:
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1.  The response attains 63.2% of its final response
at time, t = τ+θ.

2.  The line drawn tangent to the response at
maximum slope (t = θ) intersects the y/KM=1
line at (t = τ + θ ). 

3. The step response is essentially complete at t=5τ. 
In other words, the settling time is ts=5τ.             
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Figure 7.5 Graphical analysis of the process reaction curve 
to obtain parameters of a first-order plus time delay model.
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There are two generally accepted graphical techniques for 
determining model parameters τ, θ, and K. 

Method 1: Slope-intercept method
First, a slope is drawn through the inflection point of the 
process reaction curve in Fig. 7.5. Then τ and θ are 
determined by inspection. 

Alternatively, τ can be found from the time that the 
normalized response is 63.2% complete or from 
determination of the settling time, ts. Then set τ=ts/5.
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Method 2. Sundaresan and Krishnaswamy’s Method

This method avoids use of the point of inflection 
construction entirely to estimate the time delay. 
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• They proposed that two times, t1 and t2, be estimated from a 
step response curve, corresponding to the 35.3% and 85.3% 
response times, respectively. 

• The time delay and time constant are then estimated from the 
following equations:

( )
1 2

2 1

θ 1.3 0.29
(7-19)

τ 0.67
t t

t t
= −
= −

• These values of θ and τ approximately minimize the 
difference between the measured response and the model, 
based on a correlation for many data sets.

Sundaresan and Krishnaswamy’s Method
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• In general, a better approximation to an experimental step 
response can be obtained by fitting a second-order model to 
the data. 

• Figure 7.6 shows the range of shapes that can occur for the 
step response model,

( ) ( )( )1 2
(5-39)

τ 1 τ 1
KG s

s s
=

+ +

• Figure 7.6 includes two limiting cases:                 , where the 
system becomes first order, and                , the critically 
damped case. 

• The larger of the two time constants,     , is called the 
dominant time constant.

2 1τ / τ 0=
2 1τ / τ 1=

1τ

Estimating Second-order Model Parameters 
Using Graphical Analysis
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Figure 7.6 Step response for several overdamped second-
order systems.
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1. Determine t20 and t60 from the step response.

2. Find ζ and t60/τ from Fig. 7.7.

3. Find t60/τ from Fig. 7.7 and then

t60 is known).
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• Assumed model:

( )
θ

2 2τ 2ζτ 1

sKeG s
s s

−
=

+ +

• Procedure:

Smith’s Method

calculate τ (since 
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Fitting an Integrator Model

to Step Response Data

In Chapter 5 we considered the response of a first-order process 
to a step change in input of magnitude M:

( ) ( )/ τ
1 M 1 (5-18)ty t K e−= −

For short times, t < τ, the exponential term can be approximated 
by

/ τ 1
τ

t te− ≈ −

so that the approximate response is:

( )1
MM 1 1 (7-22)

τ τ
t Ky t K t  ≈ − − =    
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is virtually indistinguishable from the step response of the 
integrating element

( ) 2
2 (7-23)KG s

s
=

In the time domain, the step response of an integrator is

( )2 2 (7-24)y t K Mt=

Hence an approximate way of modeling a first-order process is 
to find the single parameter

2 (7-25)
τ
KK =

that matches the early ramp-like response to a step change in 
input.
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If the original process transfer function contains a time delay 
(cf. Eq. 7-16), the approximate short-term response to a step 
input of magnitude M would be

( ) ( ) ( )θ θKMy t t S t
t

= − −

where S(t-θ) denotes a delayed unit step function that starts at 
t=θ.



22

C
ha

pt
er

 7

Figure 7.10. Comparison of step responses for a FOPTD 
model (solid line) and the approximate integrator plus time 
delay model (dashed line).
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Development of Discrete-Time 

Dynamic Models
• A digital computer by its very nature deals internally with 

discrete-time data or numerical values of functions at equally 
spaced intervals determined by the sampling period. 

• Thus, discrete-time models such as difference equations are 
widely used in computer control applications. 

• One way a continuous-time dynamic model can be converted to 
discrete-time form is by employing a finite difference 
approximation. 

• Consider a nonlinear differential equation,

( ) ( ), (7-26)
dy t

f y u
dt

=

where y is the output variable and u is the input variable.
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• This equation can be numerically integrated (though with some 

error) by introducing a finite difference approximation for the 
derivative.

• For example, the first-order, backward difference 
approximation to the derivative at              is

where      is the integration interval specified by the user and
y(k) denotes the value of y(t) at            . Substituting Eq. 7-26 
into (7-27) and evaluating f (y, u) at the previous values of y and 
u (i.e., y(k – 1) and u(k – 1)) gives:

( ) ( )1
(7-27)

y k y kdy
dt t

− −
≅

∆

t k t= ∆

t∆
t k t= ∆

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1
1 , 1 (7-28)

1 1 , 1 (7-29)

y k y k
f y k u k

t
y k y k tf y k u k

− −
≅ − −

∆
= − + ∆ − −
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Second-Order Difference

Equation Models

( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2 (7-36)y k a y k a y k b u k b u k= − + − + − + −

• Parameters in a discrete-time model can be estimated directly 
from input-output data based on linear regression. 

• This approach is an example of system identification (Ljung, 
1999). 

• As a specific example, consider the second-order difference 
equation in (7-36). It can be used to predict y(k) from data 
available at time (k – 1)      and (k – 2)     . 

• In developing a discrete-time model, model parameters a1, a2, 
b1, and b2 are considered to be unknown. 

t∆ t∆
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( ) ( )
( ) ( )

1 1 2 2 3 1 4 2

1 2

3 4

β , β , β , β
1 , 2 ,

1 , 2

a a b b
X y k X y k

X u k X u k

− −

− −

2

1 1
β (7-8)

pN

i j ij
i j

S Y X
= =

 
= − 

 
 

∑ ∑

• This model can be expressed in the standard form of Eq. 7-7,

1
β ε (7-7)

p

j j
j

y X
=

= +∑

• The parameters are estimated by minimizing a least squares 
error criterion:

by defining: 
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Equivalently, S can be expressed as,

( ) ( ) (7-9)TS = −β βY - X Y X

where the superscript T denotes the matrix transpose and:
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1 1β

βn p

Y

Y

  
  = =   
     

βY

The least squares solution of (7-9) is:

( ) 1ˆ (7-10)
−

=β T TX X X Y


